Skip to main content
Log in

ROS generation, oxidative burst and dynamic expression profiles of ROS-scavenging enzymes of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) in response to Erwinia amylovora in pear (Pyrus communis L)

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Here, the intensity and ratio of superoxide anion (O2 ), hydrogen peroxide (H2O2) and hydroxyl anion (OH•-) formation along the in vitro shootlets of four pear (Pyrus communis L.) rootstocks (i.e., Pyrodwarf, OH × F40, OH × F69 and OH × F333) were scrutinized under E. amylovora inoculation, over 144 hpi. Furthermore, following identifying the most tolerant and susceptible pear rootstocks (i.e., OH × F69 and OH × F40, respectively), the dynamic expression profiles of three ROS-scavenging enzymatic genes including superoxide dismutase (SOD), Catalase (CAT) and ascorbate peroxidase (APX) were elucidated in response to E. amylovora, over 96 hpi. The highest disease tolerance was observed in OH × F69, and OH × F333, Pyrodwarf and OH × F40 occupied the next descending positions, respectively. Furthermore, the O2 •- generation rates were almost similar in all the pears studied, though the accumulation of H2O2 and OH•- and intensities thereof were considerably distinctive and significantly followed up the levels of disease resistance. Comparing to the controls (0 hpi), in both susceptible and tolerant pear rootstocks, transcription activity of SOD, CAT, and APX genes were overall stimulated with relatively high abundance over 24, 48, 72 and 96 hpi, though some fluctuations were also recorded. Our ROS results, altogether, indicated that E. amylovora is capable enough to stimulate ROS formation in pear, though its progress is extremely dependent upon the susceptibility ratio of the plant. Lastly, the particular expression patterns and different response time of three genes designated that pear rootstocks differentially activates genes encoding antioxidant enzymes to mitigate the possible damage of ROS during E. amylovora invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

APX:

peroxidase

AA:

Ascorbic acid

AUDPC:

Area under the disease progress curve

CAT:

Catalase

DMRT:

Duncans Multiple Range Test

E. amylovora :

Erwinia amylovora

EPSs:

Exopolysaccharides

HR:

Hypersensitive response

H2O2 :

Hydrogen peroxide

O2 :

Dioxygen

1O2 :

Singlet oxygen

OH•- :

Hydroxyl anion

O2 •- :

Superoxide anion

qRT-PCR:

Quantitative real-time PCR

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Abdollahi, H., Rugini, E., Ruzzi, M., & Muleo, R. (2004). In vitro system for studying the interaction between Erwinia amylovora and genotypes of pear. Plant Cell, Tissue and Organ Culture, 79(2), 203–212.

    Article  CAS  Google Scholar 

  • Abdollahi, H., Ghahremani, Z., Erfaninia, K., & Mehrabi, R. (2015). Role of electron transport chain of chloroplasts in oxidative burst of interaction between Erwinia amylovora and host cells. Photosynthesis Research, 124(2), 231–242.

    Article  CAS  PubMed  Google Scholar 

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.

    Article  CAS  PubMed  Google Scholar 

  • Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141(2), 391–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker, C. J., Orlandi, E. W., & Mock, N. M. (1993). Harpin, an elicitor of the hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells. Plant Physiology, 102(4), 1341–1344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharjee, S. (2010). Sites of generation and physicochemical basis of formation of reactive oxygen species in plant cell. Reactive Oxygen Species and Antioxidants in Higher Plants, 1–30.

  • Bowler, C., Montagu, M. v., & Inze, D. (1992). Superoxide dismutase and stress tolerance. Annual Review of Plant Biology, 43(1), 83–116.

    Article  CAS  Google Scholar 

  • Brownlee, C. (2002). Role of the extracellular matrix in cell–cell signalling: paracrine paradigms. Current Opinion in Plant Biology, 5(5), 396–401.

    Article  CAS  PubMed  Google Scholar 

  • Channuntapipat, C., Sedgley, M., & Collins, G. (2001). Sequences of the cDNAs and genomic DNAs encoding the S1, S7, S8, and Sf alleles from almond, Prunus dulcis. Theoretical and Applied Genetics, 103(6–7), 1115–1122.

    Article  CAS  Google Scholar 

  • Dangl, J. L., & Jones, J. D. (2001). Plant pathogens and integrated defence responses to infection. Nature, 411(6839), 826–833.

    Article  CAS  PubMed  Google Scholar 

  • Dat, J., Vandenabeele, S., Vranová, E., Van Montagu, M., Inzé, D., & Van Breusegem, F. (2000). Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences CMLS, 57(5), 779–795.

    Article  CAS  PubMed  Google Scholar 

  • Denny, T. (1995). Involvement of bacterial polysaccharides in plant pathogenesis. Annual Review of Phytopathology, 33(1), 173–197.

    Article  CAS  PubMed  Google Scholar 

  • Foreman, J., Demidchik, V., Bothwell, J. H., Mylona, P., Miedema, H., Torres, M. A., et al. (2003). Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 422(6930), 442–446.

    Article  CAS  PubMed  Google Scholar 

  • Foyer, C. H., & Noctor, G. (2005). Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell and Environment, 28(8), 1056–1071.

    Article  CAS  Google Scholar 

  • Gadjev, I., Stone, J. M., & Gechev, T. S. (2008). Programmed cell death in plants: new insights into redox regulation and the role of hydrogen peroxide. International Review of Cell and Molecular Biology, 270, 87–144.

    Article  CAS  PubMed  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930.

    Article  CAS  PubMed  Google Scholar 

  • Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine: Oxford University Press, USA.

  • Hassani, M., Salami, S. A., Nasiri, J., Abdollahi, H., & Ghahremani, Z. (2015). Phylogenetic analysis of PR genes in some pome fruit species with the emphasis on transcriptional analysis and ROS response under Erwinia amylovora inoculation in apple. Genetica, 1–14.

  • Jajic, I., Sarna, T., & Strzalka, K. (2015). Senescence, stress, and reactive oxygen species. Plants, 4(3), 393–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, M. A., Raymond, M. J., Yang, Z., & Smirnoff, N. (2007). NADPH oxidase-dependent reactive oxygen species formation required for root hair growth depends on ROP GTPase. Journal of Experimental Botany, 58(6), 1261–1270.

    Article  CAS  PubMed  Google Scholar 

  • Karuppanapandian, T., Moon, J.-C., Kim, C., Manoharan, K., & Kim, W. (2011). Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Australian Journal of Crop Science, 5(6), 709.

    CAS  Google Scholar 

  • Khan, F., Siddiqi, T. O., Mahmooduzzafar, & Ahmad, A. (2009). Morphological changes and antioxidant defence systems in soybean genotypes as affected by salt stress. Journal of Plant Interactions, 4(4), 295–306.

    Article  CAS  Google Scholar 

  • Klein, S. M., Cohen, G., & Cederbaum, A. I. (1981). Production of formaldehyde during metabolism of dimethyl sulfoxide by hydroxyl radical-generating systems. Biochemistry, 20(21), 6006–6012.

    Article  CAS  PubMed  Google Scholar 

  • Lamb, C., & Dixon, R. A. (1997). The oxidative burst in plant disease resistance. Annual Review of Plant Biology, 48(1), 251–275.

    Article  CAS  Google Scholar 

  • Le Deunff, E., Davoine, C., Le Dantec, C., Billard, J. P., & Huault, C. (2004). Oxidative burst and expression of germin/oxo genes during wounding of ryegrass leaf blades: comparison with senescence of leaf sheaths. The Plant Journal, 38(3), 421–431.

    Article  PubMed  Google Scholar 

  • Li, Z., Peng, Y., Zhang, X.-Q., Pan, M.-H., Ma, X., Huang, L.-K., et al. (2014). Exogenous spermidine improves water stress tolerance of white clover (Trifolium repens L.) involved in antioxidant defence, gene expression and proline metabolism. Plant Omics, 7(6), 517.

  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405–410.

    Article  CAS  PubMed  Google Scholar 

  • Moradi, A., Nasiri, J., Abdollahi, H., & Almasi, M. (2012). Development and evaluation of a loop-mediated isothermal amplification assay for detection of Erwinia amylovora based on chromosomal DNA. European Journal of Plant Pathology, 133(3), 609–620.

    Article  CAS  Google Scholar 

  • Nasiri, J., Naghavi, M. R., Alizadeh, H., & Moghadam, M. R. F. (2016). Seasonal-based temporal changes fluctuate expression patterns of TXS, DBAT, BAPT and DBTNBT genes alongside production of associated taxanes in Taxus baccata. Plant Cell Reports, 1–17.

  • Oh, C.-S., & Beer, S. V. (2005). Molecular genetics of Erwinia amylovora involved in the development of fire blight. FEMS Microbiology Letters, 253(2), 185–192.

    Article  CAS  PubMed  Google Scholar 

  • OH, C. S., Kim, J. F., & Beer, S. V. (2005). The Hrp pathogenicity island of Erwinia amylovora and identification of three novel genes required for systemic infection‡. Molecular Plant Pathology, 6(2), 125–138.

    Article  CAS  PubMed  Google Scholar 

  • Potter, D., Eriksson, T., Evans, R. C., Oh, S., Smedmark, J., Morgan, D. R., et al. (2007). Phylogeny and classification of Rosaceae. Plant Systematics and Evolution, 266(1–2), 5–43.

    Article  Google Scholar 

  • Quoirin, M., & Lepoivre, P. (1977). Etude de milieux adaptes aux cultures in vitro de Prunus. Acta Horticulturae.

  • Radwan, D. E. M., Fayez, K. A., Mahmoud, S. Y., Hamad, A., & Lu, G. (2006). Salicylic acid alleviates growth inhibition and oxidative stress caused by zucchini yellow mosaic virus infection in Cucurbita pepo leaves. Physiological and Molecular Plant Pathology, 69(4), 172–181.

    Article  CAS  Google Scholar 

  • Radwan, D. E. M., Fayez, K. A., Mahmoud, S. Y., & Lu, G. (2010). Modifications of antioxidant activity and protein composition of bean leaf due to Bean yellow mosaic virus infection and salicylic acid treatments. Acta Physiologiae Plantarum, 32(5), 891–904.

    Article  CAS  Google Scholar 

  • Reboutier, D., Frankart, C., Briand, J., Biligui, B., Rona, J.-P., Haapalainen, M., et al. (2007). Antagonistic action of harpin proteins: HrpWea from Erwinia amylovora suppresses HrpNea-induced cell death in Arabidopsis thaliana. Journal of Cell Science, 120(18), 3271–3278.

    Article  CAS  PubMed  Google Scholar 

  • Scheel, D. (2002). Oxidative burst and the role of reactive oxygen species in plant-pathogen interactions. Oxidative Stress in Plants, D. Inze and M. Van Montagu, eds (New York: Taylor and Francis), 137–153.

  • Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012.

  • Shetty, N. P., Jørgensen, H. J. L., Jensen, J. D., Collinge, D. B., & Shetty, H. S. (2008). Roles of reactive oxygen species in interactions between plants and pathogens. European Journal of Plant Pathology, 121(3), 267–280.

    Article  CAS  Google Scholar 

  • Soydam-Aydın, S., Büyük, İ., Cansaran-Duman, D., & Aras, S. (2015). Roles of catalase (CAT) and ascorbate peroxidase (APX) genes in stress response of eggplant (Solanum melongena L.) against Cu+2 and Zn+2 heavy metal stresses. Environmental Monitoring and Assessment, 187(12), 1–6.

    Google Scholar 

  • Storz, G., & Spiro, S. (2011). Sensing and responding to reactive oxygen and nitrogen species. Bacterial Stress Responses, 157–173.

  • Tanaka, A., Christensen, M. J., Takemoto, D., Park, P., & Scott, B. (2006). Reactive oxygen species play a role in regulating a fungus–perennial ryegrass mutualistic interaction. The Plant Cell, 18(4), 1052–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thordal-Christensen, H., Zhang, Z., Wei, Y., & Collinge, D. B. (1997). Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction. The Plant Journal, 11(6), 1187–1194.

    Article  CAS  Google Scholar 

  • Tsukamoto, T., Azegami, K., Matsuura, T., Ohara, T., Inoue, Y., Mizuno, A., et al. (2005). Infection frequency of mature apple fruit with Erwinia amylovora deposited on pedicels and its survival in the fruit stored at low temperature. Journal of General Plant Pathology, 71(4), 296–301.

    Article  Google Scholar 

  • Vaidyanathan, H., Sivakumar, P., Chakrabarty, R., & Thomas, G. (2003). Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)—differential response in salt-tolerant and sensitive varieties. Plant Science, 165(6), 1411–1418.

    Article  CAS  Google Scholar 

  • Venisse, J.-S., Gullner, G., & Brisset, M.-N. (2001). Evidence for the involvement of an oxidative stress in the initiation of infection of pear by Erwinia amylovora. Plant Physiology, 125(4), 2164–2172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vrancken, K., Holtappels, M., Schoofs, H., Deckers, T., & Valcke, R. (2013). Pathogenicity and infection strategies of the fire blight pathogen Erwinia amylovora in Rosaceae: state of the art. Microbiology, 159(5), 823–832.

    Article  CAS  PubMed  Google Scholar 

  • Vuleta, A., Jovanović, S. M., & Tucić, B. (2016). Adaptive flexibility of enzymatic antioxidants SOD, APX and CAT to high light stress: the clonal perennial monocot Iris pumila as a study case. Plant Physiology and Biochemistry.

  • Wang, Y., Wisniewski, M., Meilan, R., Cui, M., Webb, R., & Fuchigami, L. (2005). Overexpression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress. Journal of the American Society for Horticultural Science, 130(2), 167–173.

    CAS  Google Scholar 

  • Welinder, K. G. (1992). Superfamily of plant, fungal and bacterial peroxidases. Current Opinion in Structural Biology, 2(3), 388–393.

    Article  CAS  Google Scholar 

  • Wojtaszek, P. (1997). Oxidative burst: an early plant response to pathogen infection. Biochemical Journal, 322(3), 681–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, Z., & Chen, Z. (2000). Harpin-induced hypersensitive cell death is associated with altered mitochondrial functions in tobacco cells. Molecular Plant-Microbe Interactions, 13(2), 183–190.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Li, Z., Peng, Y., Wang, X., Peng, D., Li, Y., et al. (2015). Clones of FeSOD, MDHAR, DHAR Genes from White Clover and Gene Expression Analysis of ROS-Scavenging Enzymes during Abiotic Stress and Hormone Treatments. Molecules, 20(11), 20939–20954.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by special funds of Iranian Ministry of Agriculture, Seed and Plant Improvement Institute (SPII) for research on fire blight of pear and quince and a grant from Azad University, Varamin Branch of Tehran. The authors sincerely thank all the technical stuff of fruit tissue culture and biotechnology laboratory of SPII for their sincere supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Abdollahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azarabadi, S., Abdollahi, H., Torabi, M. et al. ROS generation, oxidative burst and dynamic expression profiles of ROS-scavenging enzymes of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) in response to Erwinia amylovora in pear (Pyrus communis L). Eur J Plant Pathol 147, 279–294 (2017). https://doi.org/10.1007/s10658-016-1000-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-1000-0

Keywords

Navigation