Skip to main content
Log in

Pathogen resistant advantage of endophyte-infected over endophyte-free Leymus chinensis is strengthened by pre-drought treatment

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Symbiotic relationships with beneficial microbes often increase the resistance of the host grass to abiotic and biotic stresses. In this study, the resistance of endophyte-infected (E+) and endophyte-free (E-) Leymus chinensis to two species of pathogen fungi, Curvularia lunata and Bipolaris sorokiniana, were compared under normal water and pre-drought treatments. The results showed that endophyte infection significantly reduced leaf lesion area of the host grass on one hand, and on the other hand the maximum quantum efficiency of PSII (Fv/Fm) of E+ plants was higher than E- plants, and these advantages of E+ over E- plants were strengthened by pre-drought stress. Pre-drought treatment led to significantly higher salicylic acid (SA) and lignin accumulation in E+ plants in comparison with E- when exposed to both C. lunata and B. sorokiniana. Additionally, glutamine and phenylalanine concentrations were significantly affected by the interaction between endophyte infection and pathogen inoculation. Overall, endophytes could enhance the pathogen resistance of host by activating a rapid defense reaction of the plant, and this advantage of E+ over E- plants could be strengthened by pre-drought treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alcazar, R., Marco, F., Cuevas, J. C., Patron, M., Ferrando, A., Carrasco, P., Tiburcio, A. F., & Altabella, T. (2006). Involvement of polyamines in plant response to abiotic stress. Biotechnology Letters, 28, 1867–1876.

    Article  PubMed  CAS  Google Scholar 

  • Aldea, M., Hamilton, J. G., Resti, J. P., Zangerl, A. R., Berenbaum, M. R., Frank, T. D., & DeLucia, E. H. (2006). Comparison of photosynthetic damage from arthropod herbivory and pathogen infection in understory hardwood saplings. Oecologia, 149, 221–232.

    Article  PubMed  Google Scholar 

  • Aroca, R., Ruiz-Lozano, J. M., Zamarreño, Á. M., Paz, J. A., García-Mina, J. M., Pozo, M. J., & López-Ráez, J. A. (2013). Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. Journal of Plant Physiology, 170, 47–55.

    Article  PubMed  CAS  Google Scholar 

  • Bacon, C. W. (1993). Abiotic stress tolerances (moisture, nutrients) and photosynthesis in endophyte-infected tall fescue. Agriculture, Ecosystems & Environment, 44, 123–141.

    Article  Google Scholar 

  • Bacon, C. W., Lyons, P. C., Porter, J. K., & Robbins, J. D. (1986). Ergot toxicity from endophyte-infected grasses: a review. Agronomy Journal, 78, 106–116.

    Article  CAS  Google Scholar 

  • Baker, N. R. (2008). Chlorophyll fluorescence a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89–113.

    Article  PubMed  CAS  Google Scholar 

  • Biere, A., & Bennett, A. E. (2013). Three-way interactions between plants, microbes and insects. Functional Ecology, 27, 567–573.

    Article  Google Scholar 

  • Bonos, S.A., Wilson, M.M., Meyer, W.A., & Funk, C.R. (2005). Suppression of red thread in fine fescues through endophyte-mediated resistance. Applied Turfgrass Science, 2. doi:10.1094/ATS-2005-0725-01-RS.

  • Cassab, G. I. (1998). Plant cell wall proteins. Annual Review of Plant Biology, 49, 281–309.

    Article  CAS  Google Scholar 

  • Cheplick, G. P., & Clay, K. (1988). Acquired chemical defences in grasses: the role of fungal endophytes. Oikos, 52, 309–318.

    Article  Google Scholar 

  • Christensen, M. (1996). Antifungal activity in grasses infected with Acremonium and Epichloë endophytes. Aust. Plant Pathology, 25, 186–191.

    Google Scholar 

  • Clarke, B. B., White, J. F., Hurley, R. H., Torres, M. S., Sun, S., & Huff, D. R. (2006). Endophyte-mediated suppression of dollar spot disease in fine fescues. Plant Disease, 90, 994–998.

    Article  Google Scholar 

  • Clay, K., Holah, J., & Rudgers, J.A. (2005). Herbivores cause a rapid increase in hereditary symbiosis and alter plant community composition. Proceedings of the National Academy of Sciences of the United States of America, 102, 12465–12470.

  • De Meyer, G., Audenaert, K., & Hofte, M. (1999). Pseudomonas aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not associated with PR1a expression. European Journal of Plant Pathology, 105, 513–517.

    Article  Google Scholar 

  • Deng, W. H., Zhang, F. J., & Jin, Y. H. (2007). Determination of salicylic acid in the plant tissues using RP HPLC. Journal of Beijing Forestry University, 29, 889–897.

    Google Scholar 

  • Dixon, R. A. (2001). Natural products and plant disease resistance. Nature, 411, 843–847.

    Article  PubMed  CAS  Google Scholar 

  • Edgar, C. I., McGrath, K. C., Dombrecht, B., Manners, J. M., Maclean, D. C., Schenk, P. M., & Kazan, K. (2006). Salicylic acid mediates resistance to the vascular wilt pathogen Fusarium oxysporum in the model host Arabidopsis thaliana. Australasian Plant Pathology, 35, 581–591.

    Article  CAS  Google Scholar 

  • Figueiredo, A., Fortes, A. M., Ferreira, S., Sebastiana, M., Choi, Y. H., Sousa, L., Acioli-Santos, B., Pessoa, F., Verpoorte, R., & Pais, M. S. (2008). Transcriptional and metabolic profiling of grape (Vitis vinifera L.) leaves unravel possible innate resistance against pathogenic fungi. Journal of Experimental Botany, 59, 3371–3381.

    Article  PubMed  CAS  Google Scholar 

  • Forde, B. G., & Lea, P. J. (2007). Glutamate in plants: metabolism, regulation, and signalling. Journal of Experimental Botany, 58, 2339–2358.

    Article  PubMed  CAS  Google Scholar 

  • Funnell-Harris, D. L., Pedersen, J. F., & Sattler, S. E. (2010). Alteration in lignin biosynthesis restricts growth of Fusarium spp. in brown midrib sorghum. Phytopathology, 100, 671–681.

    Article  PubMed  CAS  Google Scholar 

  • Gao, F. K., Dai, C. C., & Liu, X. Z. (2010). Mechanisms of fungal endophytes in plant protection against pathogens. African Journal of Microbiology Research, 4, 1346–1351.

    Google Scholar 

  • Gwinn, K., & Gavin, A. (1992). Relationship between endophyte infestation level of tall fescue seed lots and Rhizoctonia zeae seedling disease. Plant Disease, 76, 911–914.

    Article  Google Scholar 

  • Hammond-Kosack, K. E., & Jones, J. (1996). Resistance gene-dependent plant defense responses. Plant Cell, 8, 1773.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hesse, U., Schoberlein, W., Wittenmayer, L., Forster, K., Warnstorff, K., Diepenbrock, W., & Merbach, W. (2003). Effects of Neotyphodium endophytes on growth, reproduction and drought-stress tolerance of three Lolium perenne L. genotypes. Grass and Forage Science, 58, 407–415.

    Article  Google Scholar 

  • Holzmann-Wirth, A., Dapprich, P., Eierdanz, S., et al. (2000). Anti-fungal substances extracted from Neothyphodium endophytes. Proceedings of The 3rd International Conference on Harmful and Beneficial Microorganisms in Grassland, Pasture and Turf. Soest, 65–69.

  • Hong, Y. S., Martinez, A., Liger-Belair, G., Jeandet, P., Nuzillard, J. M., & Cilindre, C. (2012). Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea-infected Vitis vinifera cv. Chardonnay berries. Journal of Experimental Botany, 63, 5773–5785.

    Article  PubMed  CAS  Google Scholar 

  • Hou, T. J. (1980). Investigation report of grass diseases in Inner Mongolia, Gansu and Ningxia. Chinese Journal of Grassland, 2, 44–46.

    Google Scholar 

  • Jia, C., Ruan, W. B., Zhu, M. J., Ren, A. Z., & Gao, Y. B. (2013). Potential antagnosim of cultivated and wild grass-endophyte associations towards Meloidogyne incognita. Biological Control, 64, 225–230.

    Article  Google Scholar 

  • Landgraf, R., Schaarschmidt, S., & Hause, B. (2012). Repeated leaf wounding alters the colonization of Medicago truncatula roots by beneficial and pathogenic microorganisms. Plant, Cell and Environment, 35, 1344–1357.

    Article  PubMed  CAS  Google Scholar 

  • Latch, G. C. M., Christensen, M. J., & Samuels, G. J. (1984). Five endophytes of Lolium and Festuca in New Zealand [fungi, description, new taxa]. Mycotaxon, 20, 535–550.

    Google Scholar 

  • Li, C. J., Gao, J. H., & Nan, Z. B. (2007). Interactions of Neotyphodium gansuense, Achnatherum inebirians, and plant-pathogenic fungi. Mycological Research, 111, 1220–1227.

    Article  PubMed  Google Scholar 

  • Lima, M. R. M., Felgueiras, M. L., Graca, G., Rodrigues, J. E. A., Barros, A., Gil, A. M., & Dias, A. C. P. (2010). NMR metabolomics of esca disease-affected Vitis vinifera cv. Alvarinho leaves. Journal of Experimental Botany, 61, 4033–4042.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Raez, J. A., Pozo, M. J., & Garcia-Garrido, J. M. (2011). Strigolactones: a cry for help in the rhizosphere. Botany-Botanique, 89, 513–522.

    Article  CAS  Google Scholar 

  • Ma, M. Z., Christensen, M. J., & Nan, Z. B. (2015). Effects of the endophyte Epichloë festucae var. lolii of perennial ryegrass (Lolium perenne) on indicators of oxidative stress from pathogenic fungi during seed germination and seedling growth. European Journal of Plant Pathology, 141, 571–583.

    Article  CAS  Google Scholar 

  • McElrone, A. J., & Forseth, I. N. (2004). Photosynthetic responses of a temperate liana to Xylella fastidiosa infection and water stress. Journal of Phytopathology, 152, 9–20.

    Article  Google Scholar 

  • Miranda, I. M., Omacini, M., & Chaneton, E. J. (2011). Environmental context of endophyte symbioses: interacting effects of water stress and insect herbivory. International Journal of Plant Sciences, 172, 499–508.

    Article  Google Scholar 

  • Nan, Z. B., & Li, C. J. (2000). Neotyphodium in native grasses in China and observations on endophyte/host interactions. Proceedings of the 4th international Neotyphodium-grass interactions symposium. Soest, 2000, 41–50.

    Google Scholar 

  • Neal, A. L., Ahmad, S., Gordon-Weeks, R., & Ton, J. (2012). Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PloS One, 7, e35498.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Niones, J. T., & Takemoto, D. (2014). An isolate of Epichloë festucae, an endophytic fungus of temperate grasses, has growth inhibitory activity against selected grass pathogens. Journal of General Plant Pathology, 80, 337–347.

    Article  CAS  Google Scholar 

  • Pal, K. K., & Gardener, B. M. (2006). Biological control of plant pathogens. The Plant Health Instructor, 2, 1117–1142.

    Google Scholar 

  • Pańka, D., West, C. P., Guerber, C. A., & Richardson, M. D. (2013a). Susceptibility of tall fescue to Rhizoctonia zeae infection as affected by endophyte symbiosis. Annals of Applied Biology, 163, 257–268.

  • Pańka, D., Piesik, D., Jeske, M., & Baturo-Ciesniewska, A. (2013b). Production of phenolics and the emission of volatile organic compounds by perennial ryegrass (Lolium perenne L.)/Neotyphodium lolii association as a response to infection by Fusarium poae. Journal of Plant Physiology, 170, 1010–1019.

  • Pineda, A., Dicke, M., Pieterse, C. M. J., & Pozo, M. J. (2013). Beneficial microbes in a changing environment: are they always helping plants to deal with insects? Functional Ecology, 27, 574–586.

    Article  Google Scholar 

  • Qawasmeh, A., Obied, H. K., Raman, A., & Wheatley, W. (2012). Influence of fungal endophyte infection on phenolic content and antioxidant activity in grasses: interaction between Lolium perenne and different strains of Neotyphodium lolii. Journal of Agricultural and Food Chemistry, 60, 3381–3388.

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen, S., Parsons, A. J., Fraser, K., Xue, H., & Newman, J. A. (2008). Metabolic profiles of Lolium perenne are differentially affected by nitrogen supply, carbohydrate content, and fungal endophyte infection. Plant Physiology, 146, 1440–1453.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Reddy, M. V. B., Arul, J., Angers, P., & Couture, L. (1999). Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. Journal of Agricultural and Food Chemistry, 47, 1208–1216.

    Article  CAS  Google Scholar 

  • Redman, R. S., Freeman, S., Clifton, D. R., Morrel, J., Brown, G., & Rodriguez, R. J. (1999). Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of Colletotrichum magna. Plant Physiology, 119, 795–804.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rivera-Varas, V. V., Freeman, T. A., Gudmestad, N. C., & Secor, G. A. (2007). Mycoparasitism of Helminthosporium solani by Acremonium strictum. Phytopathology, 97, 1331–1337.

    Article  PubMed  Google Scholar 

  • Ross, A. F. (1961). Systemic acquired resistance induced by localized virus infections in plants. Virology, 14, 340–358.

    Article  PubMed  CAS  Google Scholar 

  • Shang, Z. H., Yu, Y. N., Guo, W., et al. (1993). Sensitive determination of amino acids composition of pig plasmin by precolumn derivatization with 1-fluoro-2, 4-dinitrobenzene and high performance liquid chromatographic (HPLC) separation. Chinese Journal of Chromatography, 11, 236–238.

    CAS  Google Scholar 

  • Shimanuki, T., & Sato, T. (1984). Studies on the mechanisms of the infection of timothy with purple spot disease cause by Clasosporium phlei. Research Bulletin of the Hokkaido National Agricultural Experimental Station, 1–56.

  • Siegel, M. R., & Latch, G. C. M. (1991). Expression of antifungal activity in agar culture by isolates of grassendophytes. Mycologia, 83, 529–537.

    Article  Google Scholar 

  • Thaler, J. S., Humphrey, P. T., & Whiteman, N. K. (2012). Evolution of jasmonate and salicylate signal crosstalk. Trends in Plant Science, 17, 260–270.

    Article  PubMed  CAS  Google Scholar 

  • Tian, P., Nan, Z. B., Li, C. J., & Spangenberg, G. (2008). Effect of the endophyte Neotyphodium lolii on susceptibility and host physiological response of perennial ryegrass to fungal pathogens. European Journal of Plant Pathology, 122, 593–602.

    Article  Google Scholar 

  • Tortora, M. L., Diaz-Ricci, J. C., & Pedraza, R. O. (2011). Azospirillum brasilense siderophores with antifungal activity against colletotrichum acutatum. Archives of Microbiology, 193, 275–286.

    Article  PubMed  CAS  Google Scholar 

  • Van der Ent, S., Van Hulten, M., Pozo, M. J., Czechowski, T., Udvardi, M. K., Pieterse, C. M. J., & Ton, J. (2009). Priming of plant innate immunity by rhizobacteria and beta-aminobutyric acid: differences and similarities in regulation. New Phytologist, 183, 419–431.

    Article  PubMed  Google Scholar 

  • Vesterlund, S. R., Helander, M., Faeth, S. H., Hyvonen, T., & Saikkonen, K. (2011). Environmental conditions and host plant origin override endophyte effects on invertebrate communities. Fungal Diversity, 47, 109–118.

    Article  Google Scholar 

  • Vlot, A. C., Dempsey, D. A., & Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 47, 177–206.

    Article  PubMed  CAS  Google Scholar 

  • Wäli, P. R., Helander, M., Nissinen, O., & Saikkonen, K. (2006). Susceptibility of endophyte-infected grasses to winter pathogens (snow molds). Canadian Journal of Botany-Revue Canadienne De Botanique, 84, 1043–1051.

  • Wang, F. W., Jiao, R. H., Cheng, A. B., Tan, S. H., & Song, Y. C. (2007). Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin a obtained from Cladosporium sp. World Journal of Microbiology and Biotechnology, 23, 79–83.

    Article  Google Scholar 

  • Waqas, M., Khan, A. L., Hamayun, M., Shahzad, R., Kim, Y. H., Choi, K. S., & Lee, I. J. (2015). Endophytic infection alleviates biotic stress in sunflower through regulation of defence hormones, antioxidants and functional amino acids. European Journal of Plant Pathology, 141, 803–824.

    Article  CAS  Google Scholar 

  • Wei, Y. K., Gao, Y. B., Xu, H., Su, D., Zhang, X., Wang, Y. H., Lin, F., Chen, L., Nie, L. Y., & Ren, A. Z. (2006). Occurrence of endophytes in grasses native to northern China. Grass and Forage Science, 61, 422–429.

    Article  Google Scholar 

  • Welty, R., Barker, R., & Azevedo, M. (1991). Reaction of tall fescue infected and noninfected by Acremonium coenophialum of Puccinia graminis subsp. graminicola. Plant Disease, 75, 883–886.

    Article  Google Scholar 

  • White Jr., J. F., Morgan-Jones, G., & Morrow, A. C. (1993). Taxonomy, life cycle, reproduction and detection of Acremonium endophytes. Agriculture, Ecosystems & Environment, 44, 13–37.

    Article  Google Scholar 

  • Wilkinson, H. H., Siegel, M. R., Blankenship, J. D., Mallory, A. C., Bush, L. P., & Schardl, C. L. (2000). Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte mutualism. Molecular Plant-Microbe Interactions, 13, 1027–1033.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y., Shah, J., & Klessing, D. F. (1997). Signal perception and transduction in plant defense responses. Genes and Development, 11, 2339–2358.

    Google Scholar 

  • Yue, Q., Miller, C. J., White, J. F., & Richardson, M. D. (2000). Isolation and characterization of fungal inhibitors from Epichloe festucae. Journal of Agricultural and Food Chemistry, 48, 4687–4692.

    Article  PubMed  CAS  Google Scholar 

  • Yule, K. M., Woolley, J. B., & Rudgers, J. A. (2011). Water availability alters the tri-trophic consequences of a plant-fungal symbiosis. Arthropod-Plant Interactions, 5, 19–27.

    Article  Google Scholar 

  • Zamioudis, C., & Pieterse, C. M. J. (2012). Modulation of host immunity by beneficial microbes. Molecular Plant-Microbe Interactions, 25, 139–150.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S. A., Moyne, A. L., Reddy, M. S., & Kloepper, J. W. (2002). The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biological Control, 25, 288–296.

    Article  Google Scholar 

  • Zhang, W., Sun, G. X., Xu, Y. X., & Guo, B. (2009). Investigation and application of analysis methods of salicylic acid in plant tissue. Asian Journal of Ecotoxicology, 4, 889–897.

    CAS  Google Scholar 

  • Zhao, Z. Q., Zheng, H. L., & Zhang, C. G. (2001). Molecular and biological basis of plant disease resistance. Chinese Bulletin of Life Sciences, 13, 135–138.

    Google Scholar 

  • Zhu, M. J., Ren, A. Z., Wen, W., & Gao, Y. B. (2013). Diversity and taxonomy of endophytes from leymus chinensis in the Inner Mongolia steppe of China. FEMS Microbiology Letters, 340, 135–145.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Natural Science Foundation (31270463 and 31570433) and Doctoral Program Foundation of Institutions of Higher Education of China (20130031110023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anzhi Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Qin, J., Chen, W. et al. Pathogen resistant advantage of endophyte-infected over endophyte-free Leymus chinensis is strengthened by pre-drought treatment. Eur J Plant Pathol 144, 477–486 (2016). https://doi.org/10.1007/s10658-015-0788-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0788-3

Keywords

Navigation