Skip to main content
Log in

Characterization of resistance to multiple fungicides in Botrytis cinerea populations from Asian ginseng in northeastern China

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Botrytis cinerea infects ginseng throughout the whole growing season and results in significant economic losses. Fungicides have been the primary strategy in disease control, but frequent applications can increase the risk of fungicide resistance. To determine the resistance of field populations, 76 B. cinerea isolates were collected from 10 ginseng fields in Northeastern China in 2012 and 2013. The sensitivities of these isolates were examined to carbendazim, iprodione, pyrimethanil and azoxystrobin by analyzing mycelial growth inhibition. Almost all test isolates were resistant to at least one fungicide. For example, 27.6 %, 49.9 % and 21.1 % of the population was resistant to one, two or three of four test fungicides, respectively. There was only one isolate that was sensitive to all four fungicides. However, none were simultaneously resistant to all of the four fungicides. Mutations for E198A in the β-tubulin gene and G143A in the cyt b gene were found in all carbendazim- and azoxystrobin-resistant isolates, respectively, indicating a high level of resistance. Various mutations in the bos1 gene were associated with iprodione resistance, among which two combined point mutations, D757N and E369P, could be a novel genotype. Gene structure analysis showed that 50 % of the isolates carried the Bcbi143/144 intron in cyt b, indicating a high inherent risk for the development of G143A-associated resistance to quinone outside inhibitor fungicides. Most resistant isolates did not show reduced compound fitness in mycelial growth, sclerotial and conidial production, aggressiveness and sensitivity to osmotic stress. In conclusion, multi-fungicide resistance of B. cinerea contributed to the inefficiency of current fungicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amiri, A., Heath, S. M., & Peres, N. A. (2013). Phenotypic characterization of multifungicide resistance in Botrytis cinerea isolates from strawberry fields in Florida. Plant Disease, 97(3), 393–401.

    Article  Google Scholar 

  • Anonymous (2012). FRAC list of plant pathogenic organisms resistant to disease control agents. Basel, Switzerland: Fungicide Resistance Action Committee.

    Google Scholar 

  • Banno, S., Yamashita, K., Fukumori, F., Okada, K., Uekusa, H., Takagaki, M., et al. (2009). Characterization of QoI resistance in Botrytis cinerea and identification of two types of mitochondrial cytochrome b gene. Plant Pathology, 58(1), 120–129.

    Article  CAS  Google Scholar 

  • Bardas, G. A., Veloukas, T., Koutita, O., & Karaoglanidis, G. S. (2010). Multiple resistance of Botrytis cinerea from kiwifruit to SDHIs, QoIs and fungicides of other chemical groups. Pest Management Science, 66(9), 967–973.

    Article  PubMed  CAS  Google Scholar 

  • Chatzidimopoulos, M., Papaevaggelou, D., & Pappas, A. C. (2013). Detection and characterization of fungicide resistant phenotypes of Botrytis cinerea in lettuce crops in Greece. European Journal of Plant Pathology, 137(2), 363–376.

    Article  CAS  Google Scholar 

  • Cui, W., Beever, R. E., Parkes, S. L., & Templeton, M. D. (2004). Evolution of an osmosensing histidine kinase in field strains of Botryotinia fuckeliana (Botrytis cinerea) in response to dicarboximide fungicide usage. Phytopathology, 94(10), 1129–1135.

    Article  PubMed  CAS  Google Scholar 

  • Cui, W., Beever, R. E., Parkes, S. L., Weeds, P. L., & Templeton, M. D. (2002). An osmosensing histidine kinase mediates dicarboximide fungicide resistance in Botryotinia fuckeliana (Botrytis cinerea). Fungal Genetics and Biology, 36(3), 187–198.

    Article  PubMed  CAS  Google Scholar 

  • De Miccolis Angelini, R. M., Rotolo, C., Masiello, M., Gerin, D., Pollastro, S., & Faretra, F. (2014). Occurrence of fungicide resistance in populations of Botryotinia fuckeliana (Botrytis cinerea) on table grape and strawberry in southern Italy. Pest Management Science, 70(12), 1785–1796.

    Article  PubMed  Google Scholar 

  • Fernández-Ortuño, D., Chen, F., & Schnabel, G. (2013). Resistance to cyprodinil and lack of fludioxonil resistance in Botrytis cinerea isolates from strawberry in north and South Carolina. Plant Disease, 97(1), 81–85.

    Article  Google Scholar 

  • Fernandez-Ortuno, D., Tores, J. A., de Vicente, A., & Perez-Garcia, A. (2008). Mechanisms of resistance to QoI fungicides in phytopathogenic fungi. International Microbiology, 11(1), 1–9.

    PubMed  CAS  Google Scholar 

  • Fillinger, S., Ajouz, S., Nicot, P. C., Leroux, P., & Bardin, M. (2012). Functional and structural comparison of pyrrolnitrin- and iprodione-induced modifications in the class III histidine-kinase Bos1 of Botrytis cinerea. PloS One. doi:10.1371/journal.pone.0042520.

    PubMed  PubMed Central  Google Scholar 

  • Grabke, A., Fernández-Ortuño, D., Amiri, A., Li, X., Peres, N. A., Smith, P., et al. (2014). Characterization of iprodione resistance in Botrytis cinerea from strawberry and blackberry. Phytopathology, 104(4), 396–402.

    Article  PubMed  CAS  Google Scholar 

  • Grasso, V., Palermo, S., Sierotzki, H., Garibaldi, A., & Gisi, U. (2006). Cytochrome b gene structure and consequences tor resistance to Qo inhibitor fungicides in plant pathogens. Pest Management Science, 62(6), 465–472.

    Article  PubMed  CAS  Google Scholar 

  • Hilber, U. W., & Schüepp, H. (1996). A reliable method for testing the sensitivity of Botryotinia fuckeliana to anilinopyrimidines in vitro. Pesticide Science, 47(3), 241–247.

    Article  CAS  Google Scholar 

  • Hu, Y., Kong, W., Wei, J., & Yang, M. (2013). Present situation and condideration of application and residue limit standard of pesticides in Panax ginseng. Central South Pharmacy, 11(9), 664–669.

    CAS  Google Scholar 

  • Jiang, J. H., Ding, L. S., Michailides, T. J., Li, H. Y., & Ma, Z. H. (2009). Molecular characterization of field azoxystrobin-resistant isolates of Botrytis cinerea. Pesticide Biochemistry and Physiology, 93(2), 72–76.

    Article  CAS  Google Scholar 

  • Kim, J., Min, J. Y., Bae, Y. S., & Kim, H. T. (2009). Molecular analysis of Botrytis cinerea causing ginseng grey mold resistant to carbendazim and the mixture of carbendazin plus diethofencarb. Plant Pathology Journal, 25(4), 322–327.

    Article  CAS  Google Scholar 

  • Korolev, N., Mamiev, M., Zahavi, T., & Elad, Y. (2011). Screening of Botrytis cinerea isolates from vineyards in Israel for resistance to fungicides. European Journal of Plant Pathology, 129(4), 591–608.

    Article  CAS  Google Scholar 

  • Lennox, C. L., & Spotts, R. A. (2003). Sensitivity of populations of Botrytis cinerea from pear-related sources to benzimidazole and dicarboximide fungicides. Plant Disease, 87(6), 645–649.

    Article  CAS  Google Scholar 

  • Leroch, M., Plesken, C., Weber, R. W. S., Kauff, F., Scalliet, G., & Hahn, M. (2013). Gray mold populations in German strawberry fields are resistant to multiple fungicides and dominated by a novel clade closely related to Botrytis cinerea. Applied and Environmental Microbiology, 79(1), 159–167.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Leroux, P. (2007). Chemical control of Botrytis and its resistance to chemical fungicides. In Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, Pathology and Control (pp. 195–222). Dordrecht: Kluwer Academic Publisher.

    Chapter  Google Scholar 

  • Leroux, P., Fritz, R., Debieu, D., Albertini, C., Lanen, C., Bach, J., et al. (2002). Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Management Science, 58(9), 876–888.

    Article  PubMed  CAS  Google Scholar 

  • Li, C., Sun, Y., & Guo, G. (2011). Analysis on how to develop the Jilin ginseng. Contemporary Eco-Agriculture, 20(1), 130–132.

    CAS  Google Scholar 

  • Ma, Z., & Michailides, T. J. (2005). Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection, 24(10), 853–863.

    Article  CAS  Google Scholar 

  • Ma, Z., Yan, L., Luo, Y., & Michailides, T. J. (2007). Sequence variation in the two-component histidine kinase gene of Botrytis cinerea associated with resistance to dicarboximide fungicides. Pesticide Biochemistry and Physiology, 88(3), 300–306.

    Article  CAS  Google Scholar 

  • Malandrakis, A., Markoglou, A., & Ziogas, B. (2011). Molecular characterization of benzimidazole-resistant B. cinerea field isolates with reduced or enhanced sensitivity to zoxamide and diethofencarb. Pesticide Biochemistry and Physiology, 99(1), 118–124.

    Article  CAS  Google Scholar 

  • Oshima, M., Banno, S., Okada, K., Takeuchi, T., Kimura, M., Ichiishi, A., et al. (2006). Survey of mutations of a histidine kinase gene BcOS1 in dicarboximide-resistant field isolates of Botrytis cinerea. Journal of General Plant Pathology, 72(1), 65–73.

    Article  CAS  Google Scholar 

  • Oshima, M., Fujimura, M., Banno, S., Hashimoto, C., Motoyama, T., Ichiishi, A., et al. (2002). A point mutation in the two-component histidine kinase BcOS-1 gene confers dicarboximide resistance in field isolates of Botrytis cinerea. Phytopathology, 92(1), 75–80.

    Article  PubMed  CAS  Google Scholar 

  • Punja, Z. K. (1997). Fungal pathogens of American ginseng (Panax quinquefolium) in British Columbia. Canadian Journal of Plant Pathology, 19(3), 301–306.

    Article  Google Scholar 

  • Punja, Z. K. (2011). American ginseng: research developments, opportunities, and challenges. Journal of Ginseng Research, 35(3), 368–374.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sun, H. Y., Wang, H. C., Chen, Y., Li, H. X., Chen, C. J., & Zhou, M. G. (2010). Multiple resistance of Botrytis cinerea from vegetable crops to carbendazim, diethofencarb, procymidone, and pyrimethanil in China. Plant Disease, 94(5), 551–556.

    Article  CAS  Google Scholar 

  • Wang, C., Bai, Q., Gao, J., Xie, Y., Hu, J., & Guo, L. (2011). Toxicity test of 22 fungicides and their different proportions against Botrytis cinerea. Agrochemicals, 50(1), 61–64.

    CAS  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & J. G. White (Eds.), PCR protocol: a guide to methods and applications (pp. 315–322). New York: Academic Press.

    Google Scholar 

  • Yarden, O., & Katan, T. (1993). Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that correlate with benomyl-resistance phenotypes of field strains of Botrytis cinerea. Phytopathology, 83(12), 1478–1483.

    Article  CAS  Google Scholar 

  • Yin, D., Chen, X., Hamada, M. S., Yu, M., Yin, Y., & Ma, Z. (2014). Multiple resistance to QoIs and other classes of fungicides in Botrytis cinerea populations from strawberry in Zhejiang province, China. European Journal of Plant Pathology, 141(1), 169–177.

    Article  Google Scholar 

  • Yin, Y. N., Kim, Y. K., & Xiao, C. L. (2012). Molecular characterization of pyraclostrobin resistance and structural diversity of the cytochrome b gene in Botrytis cinerea from apple. Phytopathology, 102(3), 315–322.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, C. Q., Liu, Y. H., & Zhu, G. N. (2010). Detection and characterization of benzimidazole resistance of Botrytis cinerea in greenhouse vegetables. European Journal of Plant Pathology, 126(4), 509–515.

    Article  CAS  Google Scholar 

  • Ziogas, B. N., Nikou, D., Markoglou, A. N., Malandrakis, A. A., & Vontas, J. (2009). Identification of a novel point mutation in the beta-tubulin gene of Botrytis cinerea and detection of benzimidazole resistance by a diagnostic PCR-RFLP assay. European Journal of Plant Pathology, 125(1), 97–107.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by China Postdoctoral Science Foundation (2013 M540065 & 2014 T70051), Foundation for Postdoctoral Research of Chinese Academy of Medical Sciences & Peking Union Medical College and Special Fund for Traditional Chinese Medicine Research (201407005).

Compliance with Ethical Standards

This study took place in the Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Room 414 of Research Building in IMPLAD. All of the isolates of Botrytis cinerea used in this study were isolated from diseased Panax ginseng, and P. ginseng samples were collected from commercial fields or purchased from local markets. No endangered or protected species were involved.

I declare on behalf of my co-authors that the described work is original research that has not been published previously and is not under consideration for publication elsewhere, in whole or in part. All of the authors listed have contributed sufficiently to this work and have approved the enclosed manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wei Gao.

Additional information

Xiao Hong Lu and Xiao Lin Jiao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X.H., Jiao, X.L., Hao, J.J. et al. Characterization of resistance to multiple fungicides in Botrytis cinerea populations from Asian ginseng in northeastern China. Eur J Plant Pathol 144, 467–476 (2016). https://doi.org/10.1007/s10658-015-0786-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0786-5

Keywords

Navigation