Skip to main content
Log in

Screening of Botrytis cinerea isolates from vineyards in Israel for resistance to fungicides

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Plots in two vineyards in the Golan Heights, Israel were treated with six botryticides during three growing seasons with 3 applications per season. Applications of fenhexamid, pyrimethanil and cyprodinil + fludioxonil were effective, resulting in 52–65% and 53–63% mean reduction in grey mould incidence and severity, respectively. Carbendazim, fluazinam and iprodione were ineffective or slightly effective. Five hundred and sixteen B. cinerea isolates were collected from infected berries or trapped from the air in the vineyards, and profiles of sensitivity to benomyl, fenhexamid, fluazinam, fludioxonil, iprodione and pyrimethanil were established for each of the isolates based on a mycelial growth test. Seventy-four percent of the isolates were sensitive to the six tested fungicides, and the other 26% of the isolates were classified into 10 phenotypes characterized by resistance to one or more fungicides. Resistant isolates showed fitness parameters similar or reduced in comparison to sensitive isolates. Resistance to benzimidazoles and to dicarboximides was the most frequent (up to 25%) and apparently pre-existed in the populations tested. Increased frequency of benzimidazole resistance, but not dicarboximide resistance, was observed following the 3 years of applications of the fungicides. High level resistance to pyrimethanil was present at a frequency of about 2% in both vineyards in the first 2 years of the sampling survey and reached 10% in the third year at Site 2. A few isolates were resistant to fenhexamid or fludioxonil (0.8 or 0.2%, respectively). No strong resistance to fluazinam was detected, although numerous, less sensitive isolates, presumably possessing multi-drug resistance traits, were recovered at higher frequency from the plots treated with fluazinam than from the untreated plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bardas, G. A., Myresiotis, C. K., & Karaoglandis, G. S. (2008). Stability and fitness of anilinopyrimidine-resistant strains of Botrytis cinerea. Phytopathology, 98, 443–450.

    Article  PubMed  CAS  Google Scholar 

  • Baroffio, C. A., Siegfried, W., & Hilber, U. W. (2003). Long-term monitoring for resistance of Botryotinia fuckeliana to anilinopyrimidine, phenylpyrrole, and hydroxyanilide fungicides in Switzerland. Plant Disease, 87, 662–666.

    Article  CAS  Google Scholar 

  • Beever, R. E., Laracy, E. P., & Pak, H. A. (1989). Strains of Botrytis cinerea resistant to dicarboximide and benzimidazole fungicides in New Zealand vineyards. Plant Patholology, 38, 427–437.

    Article  Google Scholar 

  • Campbell, C. L., & Madden, L. V. (1990). Introduction to plant disease epidemiology. New York: Wiley.

    Google Scholar 

  • Chapeland, F., Fritz, R., Lanen, C., Gredt, M., & Lerouz, P. (1999). Inheritance and mechanisms of resistance to anilinopyrimidine fungicides in Botrytis cinerea (Botryotinia fuckeliana). Pesticide Biochemistry and Physiology, 64, 85–100.

    Article  CAS  Google Scholar 

  • Edwards, S. G., & Seddon, B. (2001). Selective media for the specific isolation and enumeration of Botrytis cinerea conidia. Letters in Applied Microbiology, 32, 63–66.

    Article  PubMed  CAS  Google Scholar 

  • Elad, Y., Yunis, H., & Katan, T. (1992). Multiple resistance to benzimidazoles, dicarboximides and diethophencarb in field isolates of Botrytis cinerea in Israel. Plant Pathology, 41, 41–46.

    Article  CAS  Google Scholar 

  • Elmer, P., & Michailides, T. (2004). Epidemiology of Botrytis cinerea in orchard and vine crops. In Y. Elad, P. Williamson, P. Tudzinski, & N. Delen (Eds.), Botrytis: Biology, pathology and control (pp. 243–272). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Esterio, M., Auger, J., & Garcia, H. (2007). First report of fenhexamid resistant isolates of Botrytis cinerea on grapevine in Chile. (Abstr.). Plant Disease, 91, 768.

    Article  Google Scholar 

  • Fillinger, S., Leroux, P., Auclair, C., Barreau, C., Al Hajj, C., & Debieu, D. (2008). Genetic analysis of fenhexamid-resistant field isolates of the phytopathogenic fungus Botrytis cinerea. Antimicrobial Agents and Chemotherapy, 52, 3933–3940.

    Article  PubMed  CAS  Google Scholar 

  • Fitt, B. D. L., Creighton, N. F., & Brainbridge, A. (1985). Role of wind and rain in dispersal of Botrytis fabae conidia. Transactions British Mycological Society, 85, 307–312.

    Article  Google Scholar 

  • Förster, H., Driever, G. F., Thompson, D. C., & Adaskaveg, J. E. (2007). Postharvest decay management for stone fruit crops in California using the “reduced-risk” fungicides fludioxonil and fenhexamid. Plant Disease, 91, 209–215.

    Article  Google Scholar 

  • Förster, B., & Staub, T. (1996). Basis for use strategies of anilinopyrimidine and phenylpyrrole fungicides against Botrytis cinerea. Crop Protection, 15, 529–537.

    Article  Google Scholar 

  • Hänßler, G., & Pontzen, R. (1999). Effect of fenhexamid on the development of Botrytis cinerea. Pflanzenschutz-Nachrichten Bayer, 52, 158–176.

    Google Scholar 

  • Hilber, U. W., & Hilber-Bodmer, M. (1998). Genetic basis and monitoring of resistance of Botryotinia fuckeliana to anilinopyrimidines. Plant Disease, 82, 496–500.

    Article  CAS  Google Scholar 

  • Hilber, U. W., Schwinn, F. J., & Schuepp, H. (1995). Comparative resistance patterns of fludioxonil and vinclozolin in Botryotinia fuckeliana. Journal of Phytopathology, 143, 423–428.

    Article  CAS  Google Scholar 

  • Jo, Y.-K., Niver, A. L., Rimelspach, J. W., & Boehm, M. J. (2006). Fungicide sensitivity of Sclerotinia homoeocarpa from golf courses in Ohio. Plant Disease, 90, 807–813.

    Article  CAS  Google Scholar 

  • Kalamarakis, A. E., Petsikos-Panagiotarou, N., & Ziogas, B. N. (2000). Activity of fluazinam against strains of Botrytis cinerea resistant to benzimidazoles and/or dicarboximides and to a benzimidazole-phenylcarbamate mixture. Journal of Phytopathology, 148, 449–455.

    Article  CAS  Google Scholar 

  • Köller, W., Wilcox, W., Barnard, J., & Braun, P. (1997). Detection and quantification of resistance of Venturia inaequalis populations to sterol demethylation inhibitors. Phytopathology, 87, 184–190.

    Article  PubMed  Google Scholar 

  • Korolev, N., Mamiev, M., & Elad, Y. (2009). Resistance to fungicides among Botrytis cinerea isolates from tomato and other hosts in Israel. Acta Horticulturae, 808, 367–375.

    CAS  Google Scholar 

  • Kretschmer, M., Leroch, M., Mosbach, A., Walker, A.-S., Fillinger, S., Mernke, D., et al. (2009). Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. PLoS Pathogens, 5, Article e1000696. Retrieved June 15, 2010, from http://www.plospathogens.org

  • Leroux, P. (2004). Chemical control of Botrytis and its resistance to chemical fungicides. In Y. Elad, P. Williamson, P. Tudzinski, & N. Delen (Eds.), Botrytis: Biology, pathology and control (pp. 195–222). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Leroux, P., Chapeland, F., Desbrosses, D., & Gredt, M. (1999). Patterns of cross-resistance to fungicides in Botryotinia fuckeliana (Botrytis cinerea) isolates from French vineyards. Crop Protection, 18, 687–697.

    Article  CAS  Google Scholar 

  • Löchner, F. J., Lorenz, G., & Beetz, K.-J. (1987). Resistance management strategies for dicarboximide fungicides in grapes: results of six years’ trial work. Crop Protection, 6, 139–147.

    Article  Google Scholar 

  • Ma, Z., & Michailides, T. J. (2005). Genetic structure of Botrytis cinerea populations from different host plants in California. Plant Disease, 89, 1083–1089.

    Article  CAS  Google Scholar 

  • Morton, V., & Staub, T. (2008). A short history of fungicides. APSnet Feature, March 2008. Retrieved from http://apsnet.org/online/feature/fungi

  • Myresiotis, C. K., Karaoglandis, G. S., & Tzavella-Klonari, K. (2007). Resistance of Botrytis cinerea isolates from vegetable crops to anilidopyrimidine, phenylpyrrole, hydroxyanilide, benzimidazole, and dicarboximide fungicides. Plant Disease, 91, 407–413.

    Article  CAS  Google Scholar 

  • Oshima, M., Fujimura, M., Banno, S., Hashimoto, C., Motoyama, T., Ichiishi, A., et al. (2002). A point mutation in the two-component histidine kinase BcOS-1 gene confers dicarboximide resistance in field isolates of Botrytis cinerea. Phytopathology, 92, 75–80.

    Article  PubMed  CAS  Google Scholar 

  • Raposo, R., Delcan, J., Gomez, V., & Melgarejo, P. (1996). Distribution and fitness of isolates of Botrytis cinerea with multiple fungicide resistance in Spanish greenhouses. Plant Pathology, 45, 497–505.

    Article  Google Scholar 

  • Raposo, R., Gomez, V., Urrutia, T., & Melgarejo, P. (2000). Fitness of Botrytis cinerea associated with dicarboximide resistance. Phytopathology, 90, 1246–1249.

    Article  PubMed  CAS  Google Scholar 

  • Savary, S., Delbac, L., Rochas, A., Taisant, G., & Willocquet, L. (2009). Analysis of nonlinear relationships in dual epidemics, and its application to the management of grapevine downy and powdery mildews. Phytopathology, 99, 930–942.

    Article  PubMed  Google Scholar 

  • Suty, A., Pontzen, R., & Stenzel, K. (1999). Fenhexamid—sensitivity of Botrytis cinerea: determination of baseline sensitivity and assessment of the risk of resistance. Pflanzenschutz-Nachrichten Bayer, 52, 145–157.

    Google Scholar 

  • Vignutelli, A., Hilber-Bodmer, M., & Hilber, U. W. (2002). Genetic analysis of resistance to the phenylpyrrole fludioxonil and the dicarboximide vinclozolin in Botryotinia fuckeliana (Botrytis cinerea). Mycological Research, 106, 329–335.

    Article  CAS  Google Scholar 

  • Yourman, L. F., & Jeffers, S. N. (1999). Resistance to benzimidazole and dicarboximide fungicides in greenhouse isolates of Botrytis cinerea. Plant Disease, 83, 569–575.

    Article  CAS  Google Scholar 

  • Yourman, L. F., Jeffers, S. N., & Dean, R. A. (2001). Phenotype instability in Botrytis cinerea in the absence of benzimidazole and dicarboximide fungicides. Phytopathology, 91, 307–315.

    Article  PubMed  CAS  Google Scholar 

  • Ziogas, B. N., Markoglou, A. N., & Spyropoulou, V. (2005). Effect of phenylpyrrole-resistance mutations on ecological fitness of Botrytis cinerea and their genetic basis in Ustilago maydis. European Journal of Plant Pathology, 113, 83–100.

    Article  CAS  Google Scholar 

Download references

Acknowledments

This research was partially supported by a fellowship from the Israeli Ministry of Immigration and by the research fund of the Chief Scientist of the Israeli Ministry of Agriculture and Rural Development, project no. 132-1106-03. The authors acknowledge Ruth Harpaz for her assistance with the disease evaluations and thank Suleiman Farhat for spraying the experiments. Contribution No 521/09 from the ARO, Volcani Center, Institute of Plant Protection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Korolev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korolev, N., Mamiev, M., Zahavi, T. et al. Screening of Botrytis cinerea isolates from vineyards in Israel for resistance to fungicides. Eur J Plant Pathol 129, 591–608 (2011). https://doi.org/10.1007/s10658-010-9723-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-010-9723-9

Keywords

Navigation