Skip to main content
Log in

A pith necrosis caused by Xanthomonas perforans on tomato plants

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Pith necrosis is a common disease of tomato in Europe, mainly caused by Pseudomonas corrugata and other soil-borne species of Pseudomonas. During 2011–2012 a survey was conducted in soil-grown tomato crops in southeastern Sicily (Italy). Plants showed pith necrosis, brown discolouration of the vascular tissues, leaf chlorosis and sometimes wilting of leaves. Thirty bacterial isolates from symptomatic tissues, forming colonies on NA and KB, were identified by morphological, biochemical and physiological tests. Among them, seven isolates were analyzed for their 16S rDNA and 16S–23S spacer region sequence that resulted in 99 % identity to that of the Xanthomonas perforans type strain (GenBank accession number GQ46173over 2.085 bp.). Additional sequences of fusA, gapA, gltA, gyrB, lacF, and lepA from one selected isolate were 100% identical to sequences of the Xanthomonas perforans type strain. X. perforans local isolates showed similar genomic patterns with REP-PCR and fAFLP, and were clearly distinguished from other Xanthomonas spp. type strains. In stem-inoculation assays, bacteria isolated from symptomatic tomato plants identified as P. fluorescens, P. putida, P. marginalis, P. citronellolis, P. straminea, and Pantoea agglomerans induced discolouration of vascular tissues, while Pectobacterium carotovorum subsp. atrosepticum isolates induced soft rot. Conversely, the isolates here identified as Xanthomonas perforans were able to induce pith necrosis, vascular discolouration, longitudinal splits and external lesions on stems. This report of X. perforans causing pith necrosis on tomato represents a potentially serious problem that may limit the productivity of tomato crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alippi, A. M., Dal Bo, E., Ronco, L. B., Lopez, M. V., Lopez, A. C., & Aguilar, O. M. (2003). Pseudomonas populations causing pith necrosis of tomato and pepper in Argentina are highly diverse. Plant Pathology, 52, 287–302.

    Article  CAS  Google Scholar 

  • Almeida, N. F., Yan, S., Cai, R., Clarke, C. R., Morris, C. E., Schaad, N. W., et al. (2010). PAMDB, a multilocus sequence typing and analysis database and website for plant-associated microbes. Phytopathology, 100, 208–215.

    Article  PubMed  CAS  Google Scholar 

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    PubMed  CAS  Google Scholar 

  • Bella, P., & Catara, V. (2009). Occurrence of tomato pith necrosis caused by Pseudomonas marginalis in Italy. New Disease Reports, 19, 58.

    Google Scholar 

  • Bogdanove, A. J., Koebnik, R., Lu, H., Furutani, A., Angiuoli, S. V., Patil, P. B., et al. (2011). Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. Journal of Bacteriology, 193, 5450–5464.

    Article  PubMed  CAS  Google Scholar 

  • Castello, I., Vitale, A., Dimartino, M., Panebianco, S., Cirvilleri, G., & Polizzi, G. (2010). Efficacia della solarizzazione nel contenimento di infezioni vascolari di pseudomonadi fluorescenti su pomodoro in ambiente protetto. Atti Giornate Fitopatologiche, 2, 509–516.

    Google Scholar 

  • Catara, V., Sutra, L., Morineau, A., Achouak, W., Christen, R., & Gardan, L. (2002). Phenotypic and genomic evidence for the revision of Pseudomonas corrugata and proposal of Pseudomonas mediterranea sp. nov. International Journal of Systematic and Evolutionary Microbiology, 52, 1749–1758.

    Article  PubMed  CAS  Google Scholar 

  • Cirvilleri, G., Spina, S., Scuderi, G., Gentile, A., & Catara, A. (2005). Characterization of antagonistic root-associated fluorescent Pseudomonas of transgenic and non-transgenic citrange troyer plants. Journal of Plant Pathology, 87, 179–186.

    CAS  Google Scholar 

  • Cirvilleri, G., Scuderi, G., Bonaccorsi, A., & Scortichini, M. (2007). Occurrence of Pseudomonas syringae pv. coryli on hazelnut orchards in Sicily, Italy and characterization by fluorescent amplified fragment length polymorphism. Journal of Phytopathology, 155, 397–402.

    Article  CAS  Google Scholar 

  • Clark, R. G., & Watson, D. R. W. (1986). New plant disease record in New Zealand:Tomato pith necrosis caused by Pseudomonas corrugata. New Zealand Journal of Agricultural Research, 29, 105–109.

    Article  Google Scholar 

  • Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology, 26, 297–302.

    Article  Google Scholar 

  • Dimartino, M., Panebianco, S., Vitale, A., Castello, I., Leonardi, C., Cirvilleri, G., et al. (2011). Occurrence and pathogenicity of Pseudomonas fluorescens and P. putida on tomato plants in Italy. Journal of Plant Pathology, 93, 79–87.

    Google Scholar 

  • Djian-Caporalino, C., Molinari, S., Palloix, A., Ciancio, A., Fazari, A., Marteu, N., et al. (2011). The reproductive potential of the root-knot nematode Meloidogyne incognita is affected by selection for virulence against major resistance gene from tomato and pepper. European Journal of Plant Pathology, 131, 431–440.

    Article  Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.

    Article  Google Scholar 

  • Felsenstein, J. (2004). PHYLIP (Phylogeny Inference Package) version 3.6 distributed by the author. Seattle: Department of Genome Sciences, University of Washington.

    Google Scholar 

  • Gouy, M., Guindon, S., & Gascuel, O. (2010). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27, 221–224.

    Article  PubMed  CAS  Google Scholar 

  • Innes, M. A., Gelfand, D. H., & Sninsky, J. J. (1995). PCR strategies. New York: Academic.

    Google Scholar 

  • Jones, J. B., Bouzar, H., Stall, R. E., Almira, E. C., Roberts, P., Bowen, B. W., et al. (2000). Systematic analysis of xanthomonads (Xanthomonas spp.) associated with pepper and tomato lesions. International Journal of Systematic and Evolutionary Microbiology, 50, 1211–1219.

    Article  PubMed  CAS  Google Scholar 

  • Jones, J. B., Lacy, G. H., Bouzar, H., Stall, R. E., & Schaad, N. W. (2004). Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Systematic and Applied Microbiology, 27, 755–762.

    Article  PubMed  CAS  Google Scholar 

  • Kassama, Y., Rooney, P. J., & Goodacre, R. (2002). Fluorescent amplified fragment length polymorphism probalistic database for identification of bacterial isolates from urinary tracts infections. Journal of Clinical Microbiology, 40, 2795–2800.

    Article  PubMed  CAS  Google Scholar 

  • King, E. O., Ward, M. K., & Raney, D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorescein. The Journal of Laboratory and Clinical Medicine, 44, 301–307.

    PubMed  CAS  Google Scholar 

  • Klein, E., Katan, J., & Gamliel, A. (2012). Soil suppressivenes to Meloidogyne javanica as induced by organic amendments and solarization in greenhouse crops. Crop Protection, 39, 26–32.

    Article  Google Scholar 

  • Kůdela, V., Krejzar, V., & Pánková, I. (2010). Pseudomonas corrugata and Pseudomonas marginalis associated with the collapse of tomato plants in rockwool slab hydroponic culture. Plant Protection Science, 46, 1–11.

    Google Scholar 

  • Laysan, Y., & Uygur, S. (2005). Epiphytic survival of Pseudomonas viridiflava, causal agent of pith necrosis of tomato, on weeds in Turkey. Journal of Plant Pathology, 87, 135–199.

    Google Scholar 

  • Lelliott, R. A., & Stead, D. E. (1987). Methods for the diagnosis of bacterial diseases of plants. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Lim, S. H., So, B. H., Wang, J. C., Song, E. S., Park, Y. J., Lee, B. M., et al. (2008). Functional analysis of pilQ gene in Xanthomonas oryzae pv. oryzae, bacterial blight pathogen of rice. Journal of Microbiology, 46, 214–220.

    Article  CAS  Google Scholar 

  • Llama-Palacios, A., Lòpez-Solanilla E., & Rodrìguez-Palenzuela, P. (2002). The ybiT gene of Erwinia chrysanthemi codes for a putative ABC transporter and is involved in competitiveness against endophytic bacteria during infection. Applied and Environmental Microbiology, 68, 1624–1630.

    Google Scholar 

  • Lo Cantore, P., & Iacobellis, N. S. (2002). Necrosi corticale e del midollo del pomodoro causata da Pseudomonas fluorescens in Puglia. Informatore Fitopatologico, 4, 54–57.

    Google Scholar 

  • Louws, F. J., Fulbright, D. W., Stephens, C. T., & de Bruijn, F. J. (1994). Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Applied and Environmental Microbiology, 60, 2286–2295.

    PubMed  CAS  Google Scholar 

  • Molan, Y., & Ibrahim, Y. (2007). First report of tomato (Lycopericon esculentum) pith necrosis caused by Pseudomonas fluorescens and P. corrugata in the Kindgom of Saudi Arabia. Plant Disease, 91, 110.

    Article  Google Scholar 

  • Muyzer, G., De Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59, 695–700.

    PubMed  CAS  Google Scholar 

  • Polizzi, G., Dimartino, M. A., Panebianco, S., & Cirvilleri, G. (2007). A new emergence on soilless tomato cultures in Sicily: vascular and pith discolouration caused by Pseudomonas fluorescens and P. putida. Journal of Plant Pathology, 89, 54–55.

    Google Scholar 

  • Ponsonnet, C., & Nesme, X. (1994). Identification of Agrobacterium strains by PCR-RFLP analysis of pTi and chromosomal regions. Archivies of Microbiology, 16, 300–309.

    Google Scholar 

  • Potnis, N., Krasileva, K., Chow, V., Almeida, N., Patil, P., Ryan, R. P., et al. (2011). Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper. BMC Genomics, 12, 146.

    Article  PubMed  CAS  Google Scholar 

  • Scarlett, C. M., Fletcher, J. T., Roberts, P., & Lelliott, R. A. (1978). Tomato pith necrosis caused by Pseudomonas corrugata n.sp. Annals of Appied Biology, 88, 105–114.

    Article  Google Scholar 

  • Schaad, N. W., Jones, J. B., & Chun, W. (2001). Laboratory guide for identification of plant pathogenic bacteria. St. Paul: The American Phytopathological Society.

    Google Scholar 

  • Scortichini, M., Marcelletti, S., Ferrante, P., Petriccione, M., & Firrao, G. (2012). Pseudomonas syringae pv. actinidiae: a re-emerging, multi-faceted, pandemic pathogen. Molecular Plant Pathology, 13, 631–640.

    Article  PubMed  Google Scholar 

  • Vauterin, L., Hoste, B., Kersters, K., & Swings, J. (1995). Reclassification of Xanthomonas. International Journal of Systematic Bacteriology, 45, 472–489.

    Article  CAS  Google Scholar 

  • Vitale, A., Castello, I., Cascone, G., D’Emilio, A., Mazzarella, R., & Polizzi, G. (2011). Reduction of corky root infections on greenhouse tomato crops by soil solarization in south Italy. Plant Disease, 95, 195–201.

    Article  Google Scholar 

  • Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Researches, 11, 4407–4414.

    Article  Google Scholar 

  • Wilkie, J. P., & Dye, D. W. (1974). Pseudomonas cichorii causing tomato and celery diseases in New Zealand. New Zealand Journal of Agriculture Research, 17, 123–130.

    Article  Google Scholar 

Download references

Acknowledgments

The Authors thank C. Moretti of Dipartimento di Scienze Agrarie e Ambientali, Perugia (Italy) for supplying Xanthomonas type strains, and K. Geider, Institute for Plant Protection, Dossenheim, Germany, for helpful assistance at the beginning of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Cirvilleri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aiello, D., Scuderi, G., Vitale, A. et al. A pith necrosis caused by Xanthomonas perforans on tomato plants. Eur J Plant Pathol 137, 29–41 (2013). https://doi.org/10.1007/s10658-013-0214-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-013-0214-7

Keywords

Navigation