Skip to main content
Log in

Characterization of Agrobacterium species by capillary isoelectric focusing

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Tumorigenic and non-tumorigenic strains of Agrobacterium tumefaciens, A. rhizogenes, A.rubi, and A.vitis were examined using capillary isoelectric focusing, phenotypic determinative tests, PCR and fatty acid analysis. The isoelectric points (pI) of the 40 strains investigated clearly differentiated the strains according to their respective species. The different species were characterized with the following pI values: A. tumefaciens 2.2, A. rhizogenes 4.0, A. rubi 2.15, and A. vitis 2.6. This differentiation corresponded to the phenotypic, PCR and fatty acid characterizations. Strains with the similar chromosomal background but different plasmid content, e.g. A.vitis strain S4, and F2/5 gave the same pI values. Strains of Rhizobium species differed from Agrobacterium strains in their pI values. The advantage of capillary isoelectric focusing over the phenotypic determinative tests, PCR and fatty acid analysis is its speed (15 min), relative simplicity, and the very small amount of chemicals used. This rapid and simple method is a major improvement over the classical methods of separation of Agrobacterium species and should prove useful for rapid characterization of Agrobacterium-like colonies isolated from plant tumours for epidemiological and generic diversity studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Armstrong, D. W., & He, L. (2001). Determination of cell viability in single or mixed samples using capillary electrophoresis laser-induced fluorescence microfluidic systems. Analytical Chemistry, 73, 4551–4557.

    Article  PubMed  CAS  Google Scholar 

  • Bini, F., Kuczmog, A., Putnoky, P., Otten, L., Bazzi, C., Burr, T. J., et al. (2008). Novel pathogen-specific primers for detection of Agrobacterium vitis and Agrobacterium tumefaciens. Vitis, 47, 181–189.

    CAS  Google Scholar 

  • Bouzar, H., Jones, J. B., & Hodge, N. C. (1993). Differential characterization of Agrobacterium species using carbon-source utilization patterns and fatty acid profiles. Phytopathology, 83, 733–739.

    Article  CAS  Google Scholar 

  • Costechareyre, D., Rhouma, A., Lavire, C., Perrine, P., Chappulliot, D., Bertolla, F., et al. (2010). Rapid and efficient identification of Agrobacterium species by recA allele analysis: Agrobacterium RecA diversity. Microbial Ecology, 60, 862–872.

    Article  PubMed  CAS  Google Scholar 

  • Desai, M. J., & Armstrong, D. W. (2003). Separation, identification, and characterization of microorganisms by capillary electrophoresis. Microbiology and Molecular Biology Reviews, 67, 38–51.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, B., & Roberts, P. (1981). The classification, identification and nomenclature of agrobacteria. Journal of Applied Bacteriology, 50, 443–467.

    Article  Google Scholar 

  • Horká, M., Růžička, F., Holá, V., & Šlais, K. (2006). Capillary isoelectric focusing of microorganisms in the pH range 2–5 in a dynamically modified FS capillary with UV detection. Analytical and Bioanalytical Chemistry, 385, 840–846.

    Article  PubMed  Google Scholar 

  • Horká, M., Růžička, F., Horký, J., Holá, V., & Šlais, K. (2006). Capillary isoelectric focusing of proteins and microorganisms in dynamically modified fused silica with UV detection. Journal of Chromatography. B, 841, 152–159.

    Article  Google Scholar 

  • Horká, M., Horky, J., Matoušková, H., & Šlais, K. (2009). Free flow and capillary isoelectric focusing of bacteria from tomatoes. Journal of Chromatography. A, 1216, 1019–1024.

    Article  PubMed  Google Scholar 

  • Horká, M., Horký, J., Kubesová, A., Mazanec, K., Matoušková, H., & Šlais, K. (2010). Electromigration techniques—a fast and economical tool for differentiation of similar strains of microorganisms. Analyst, 135, 1636–1644.

    Article  PubMed  Google Scholar 

  • Kerr, A., & Panagopoulos, C. G. (1977). Biotypes of Agrobacterium radiobacter var. tumefaciens and their biological control. Phytopathologische Zeitschrift, 90, 172–179.

    Article  Google Scholar 

  • Lantz, A. W., Bao, Y., & Armstrong, D. W. (2007). Single-cell detection: test of microbial contamination using capillary electrophoresis. Analytical Chemistry, 79, 1720–1724.

    Article  PubMed  CAS  Google Scholar 

  • Moore, L. W., Bouzar, H., & Burr, T. (2001). Agrobacterium. In N. W. Schaad (Ed.), Laboratory guide for identification of plant pathogenic bacteria (pp. 16–36). St Paul: APS.

    Google Scholar 

  • Palacio-Bielsa, A., González-Abolafio, R., Álvarez, B., Lastra, B., Cambra, M. A., Salcedo, C. I., et al. (2009). Chromosomal and Ti plasmid characterization of tumorigenic strains of three Rhizobium species isolated from grapevine tumours. Plant Pathology, 58, 584–593.

    Article  CAS  Google Scholar 

  • Petr, J., Ryparova, O., Ranc, V., Hinnerova, P., Znaleziona, J., Kowalska, M., et al. (2009). Assessment of CE for the identification of microorganisms. Electrophoresis, 30, 444–449.

    Article  PubMed  CAS  Google Scholar 

  • Puławska, J., Maes, M., Willems, A., & Sobiczewski, P. (2000). Phylogenetic analysis of 23S rRNA gene sequences of Agrobacterium, Rhizobium and Sinorhizobium strains. Systematic and Applied Microbiology, 23, 238–244.

    Article  PubMed  Google Scholar 

  • Puławska, J., Willems, A., & Sobiczewski, P. (2006). Rapid and specific identification of four Agrobacterium species and biovars using multiplex PCR. Systematic and Applied Microbiology, 29, 470–479.

    Article  PubMed  Google Scholar 

  • Rodriguez, M. A., & Armstrong, D. W. (2004). Separation and analysis of colloidal/nano-particles including microorganisms by capillary electrophoresis: a fundamental review. Journal of Chromatography. B, 800, 7–25.

    Article  CAS  Google Scholar 

  • Sasser, M. (1990). Technical note 102: Tracking a strain using the Microbial Identification System. North Newark: MIS.

    Google Scholar 

  • Šťastná, M., & Šlais, K. (2003). Dynamics of gel isoelectric focusing with ampholytic dyes monitored by camera in real-time. Journal of Chromatography. A, 1008, 193–203.

    Article  PubMed  Google Scholar 

  • Šťastná, M., & Šlais, K. (2005). Colored pI standards and gel isoelectric focusing in strongly acidic pH. Analytical and Bioanalytical Chemistry, 382, 65–72.

    Article  PubMed  Google Scholar 

  • Šťastná, M., Trávníček, M., & Šlais, K. (2005). New azo dyes as colored isoelectric point markers for isoelectric focusing in acidic pH region. Electrophoresis, 26, 53–59.

    Article  PubMed  Google Scholar 

  • Süle, S. (1978). Biotypes of Agrobacterium tumefaciens in Hungary. Journal of Applied Bacteriology, 44, 207–213.

    Article  Google Scholar 

  • Süle, S., Cursino, L., Zheng, D., Hoch, H. C., & Burr, T. J. (2009). Surface motility and associated surfactant production in Agrobacterium vitis. Letters in Applied Microbiology, 49, 596–601.

    Article  PubMed  Google Scholar 

  • Suzaki, K., Yoshida, K., & Sawada, H. (2004). Detection of tumorigenic Rhizobium strains from infected apple saplings by colony PCR with improved PCR primers. Journal of General Plant Pathology, 70, 342–347.

    Article  CAS  Google Scholar 

  • Tighe, S. W., de Lajudie, P., Dipietro, K., Lindström, K., Nick, G., & Jarvis, D. D. W. (2000). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. International Journal of Systematic and Evolutionary Microbiology, 50, 787–801.

    Article  PubMed  CAS  Google Scholar 

  • Willems, A., & Collins, M. D. (1993). Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequences. International Journal of Systematic Bacteriology, 43, 305–313.

    Article  PubMed  CAS  Google Scholar 

  • Young, J. M., Park, D.-C., & Weir, S. B. (2004). Diversity of 16S rDNA sequences of Rhizobium spp. implications for species determinations. FEMS Microbiology Letters, 238, 125–131.

    PubMed  CAS  Google Scholar 

  • Young, J. M., Kerr, A., & Sawada, H. (2005). Genus II. Agrobacterium Conn 1942. In Brenner, Krieg, Staley, & Garrity (Eds.), The proteobacteria, Bergey’s manual of systematic bacteriology, vol. 2 (2nd ed., pp. 340–345). New York: Springer-Verlag.

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant Agency of the Academy of Sciences of the Czech Republic No. IAAX00310701 and by the Institutional research plan AVO Z40310501. We are grateful to Dr. J.M. Young (New Zealand) for critical reading and comments on the manuscript. We thank Dr I. Dusha (Biological Research Centre, Hungarian Academy of Sciences, Szeged) providing Rhizobium strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sándor Süle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Süle, S., Horká, M., Matoušková, H. et al. Characterization of Agrobacterium species by capillary isoelectric focusing. Eur J Plant Pathol 132, 81–89 (2012). https://doi.org/10.1007/s10658-011-9850-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-011-9850-y

Keywords

Navigation