Skip to main content
Log in

Somatic embryogenesis efficiently eliminates viroid infections from grapevines

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Indirect somatic embryogenesis is effective at eliminating the most important viruses affecting grapevines. Accordingly, this technique was tested as a method for eradicating two widespread viroids, Grapevine yellow speckle viroid 1 (GYSVd-1) and Hop stunt viroid (HSVd), from four grapevine cultivars. Both viroids were detected by RT-PCR in grapevine floral explants used for initiating embryogenic cultures, as well as in undifferentiated cells of embryogenic and non-embryogenic calli from anthers and ovaries. In contrast, somatic embryos differentiated from these infected calli were viroid-free, and viroids were not detected in embryo-derived plantlets even 3 years after their transfer to greenhouse conditions. A wider spatial distribution of HSVd than GYSVd-1 within proliferating calli was revealed by in situ hybridization, whereas no hybridization signal was detected in the somatic embryos. In addition, GYSVd-1 and HSVd were localised in the nucleus of infected cells, conclusively showing the nuclear accumulation of representative members of Apscaviroid and Hostuviroid genera, which has been only an assumption so far. Somatic embryogenesis was compared to in vitro thermotherapy, a technique routinely used for virus eradication. After thermotherapy, HSVd and GYSVd-1 were detected in all in vitro plantlets of the cultivar Roussan, and in all lines analysed after 3 years of culture in greenhouse. The high efficiency with which somatic embryogenesis may eliminate viroids and viruses from several infected grapevine cultivars, should allow the availability of virus- and viroid-free material, which would be useful not only for sanitary selection but also for basic research on plant-virus and plant-viroid interactions in grapevine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bar-Joseph, M. (1996). Natural history of viroids—Horticultural aspects. In A. Hadidi, R. Flores, J. W. Randles, & J. S. Semancik (Eds.), Viroids (pp. 246–251). Collingwood: CSIRO Publishing.

    Google Scholar 

  • Borroto-Fernandez, E. G., Sommerbauer, T., Popowich, E., Schartl, A., & Laimer, M. (2009). Somatic embryogenesis from anthers of the autochthonous Vitis vinifera cv. Domina leads to Arabis mosaic virus-free plants. European Journal of Plant Pathology, 124, 171–174.

    Article  Google Scholar 

  • Di Serio, F., Martínez de Alba, A. E., Navarro, B., Gisel, A., & Flores, R. (2010). RNA-dependent RNA polymerase 6 delays accumulation and precludes meristem invasion of a nuclear-replicating viroid. Journal of Virology, 84, 2477–2489.

    Article  PubMed  Google Scholar 

  • Ding, B. (2009). The biology of viroid-host interactions. Annual Review of Phytopathology, 47, 105–131.

    Article  PubMed  CAS  Google Scholar 

  • Duran-Vila, N., Juarez, J., & Arregui, J. M. (1988). Production of viroid-free grapevines by shoot tip culture. American Journal of Enology and Viticulture, 39, 217–220.

    Google Scholar 

  • Eiras, M., Targon, M. L. P. N., Fajardo, T. V. M., Flores, R., & Kitajima, E. W. (2006). Citrus exocortis viroid and Hop stunt viroid doubly infecting grapevine in Brazil. Fitopatologia Brasileira, 31, 440–444.

    Article  Google Scholar 

  • Flores, R., Daros, J. A., & Hernández, C. (2000). The Avsunviroidae family: viroids with hammerhead ribozymes. Advances in Virus Research, 55, 271–323.

    Article  PubMed  CAS  Google Scholar 

  • Flores, R., Hernández, C., Martínez de Alba, A. E., Daros, J. A., & Di Serio, F. (2005). Viroids and viroid–host interactions. Annual Review of Phytopathology, 43, 117–139.

    Article  PubMed  CAS  Google Scholar 

  • Gambino, G., & Gribaudo, I. (2006). Simultaneous detection of nine grapevine viruses by multiplex RT-PCR with coamplification of a plant RNA internal control. Phytopathology, 96, 1223–1229.

    Article  PubMed  CAS  Google Scholar 

  • Gambino, G., Bondaz, J., & Gribaudo, I. (2006). Detection and elimination of viruses in callus, somatic embryos and regenerated plantlets of grapevine. European Journal of Plant Pathology, 114, 397–404.

    Article  Google Scholar 

  • Gambino, G., Perrone, I., & Gribaudo, I. (2008). A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochemical Analysis, 19, 520–525.

    Article  PubMed  CAS  Google Scholar 

  • Gambino, G., Di Matteo, D., & Gribaudo, I. (2009). Elimination of Grapevine fanleaf virus from three Vitis vinifera cultivars by somatic embryogenesis. European Journal of Plant Pathology, 123, 57–60.

    Article  Google Scholar 

  • Gambino, G., Vallania, R., & Gribaudo, I. (2010). In situ localization of Grapevine fanleaf virus and phloem-restricted viruses in embryogenic callus of Vitis vinifera. European Journal of Plant Pathology, 127, 557–570.

    Article  Google Scholar 

  • Garcia-Arenal, F., Pallas, V., & Flores, R. (1987). The sequence of a viroid from grapevine closely related to severe isolates of Citrus exocortis viroid. Nucleic Acids Research, 15, 4203–4210.

    Article  PubMed  CAS  Google Scholar 

  • Goussard, P. G., Wiid, J., & Kasdorf, G. G. F. (1991). The effectiveness of in vitro somatic embryogenesis in eliminating fanleaf virus and leafroll associated viruses from grapevines. South African Journal of Enology and Viticulture, 12, 77–81.

    Google Scholar 

  • Gribaudo, I., Gambino, G., & Vallania, R. (2004). Somatic embryogenesis from grapevine anthers: identification of the optimal developmental stage for collecting explants. American Journal of Enology and Viticulture, 55, 427–430.

    Google Scholar 

  • Gribaudo, I., Gambino, G., Cuozzo, D., & Mannini, F. (2006). Attempts to eliminate Grapevine rupestris stem pitting-associated virus from grapevine clones. Journal of Plant Pathology, 88, 293–298.

    Google Scholar 

  • Jaillon, O., Aury, J. M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., et al. (2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449, 463–467.

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi-Ito, Y., Li, S. F., Tagawa, M., Araki, H., Goshono, M., Yamamoto, S., et al. (2009). Cultivated grapevines represent a symptomless reservoir for the transmission of Hop Stunt Viroid to hop crops: 15 years of evolutionary analysis. PLoS ONE, 4, e8386. doi:10.1371/journal.pone.0008386. http://www.plosone.org/home.action.

    Article  PubMed  Google Scholar 

  • Koltunow, A. M., Krake, L. R., Johnson, S. D., & Rezaian, M. A. (1989). Two related viroids cause grapevine yellow speckle disease independently. Journal of General Virology, 70, 3411–3419.

    Article  CAS  Google Scholar 

  • Koltunow, A. M., & Rezaian, M. A. (1988). Grapevine yellow speckle viroid: structural features of a new viroid group. Nucleic Acid Research, 16, 849–864.

    Article  CAS  Google Scholar 

  • Little, A., & Rezaian, M. A. (2003). Grapevine viroids. In A. Hadidi, R. Flores, J. W. Randles, & J. S. Semancik (Eds.), viroids (pp. 195–206). Collingwood: CSIRO Publishing.

    Google Scholar 

  • Martinelli, L., & Gribaudo, I. (2009). Strategies for effective somatic embryogenesis in grapevine (Vitis spp.). An appraisal. In K. Roubelakis-Angelakis (Ed.), Grapevine Molecular Physiology & Biotechnology, 2nd (pp. 461–493). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Mayer, K. F., Schoof, H., Haecker, A., Lenhard, M., Jurgens, G., & Laux, T. (1998). Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 95, 805–815.

    Article  PubMed  CAS  Google Scholar 

  • Mica, E., Piccolo, V., Delledonne, M., Ferrarini, A., Pezzotti, M., Casati, C., et al. (2009). High throughput approaches reveal splicing of primary microRNA transcripts and tissue specific expression of mature microRNAs in Vitis vinifera. BMC Genomics, 10, 558. doi:10.1186/1471-2164-10-558.

    Article  PubMed  Google Scholar 

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  • Navarro, B., Pantaleo, V., Gisel, A., Moxon, S., Dalmay, T., Bisztray, G., et al. (2009). Deep sequencing of viroid-derived small RNAs from grapevine provides new insights on the role of RNA silencing in plant-viroid interaction. PLoS One, 4, e7686. doi:10.1371/journal.pone.0007686.

    Article  PubMed  Google Scholar 

  • Pantaleo, V., Szittya, G., Moxon, S., Miozzi, L., Moulton, V., Dalmay, T., et al. (2010). Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant Journal, 62, 960–976.

    PubMed  CAS  Google Scholar 

  • Polivka, H., Staub, U., & Gross, H. J. (1996). Variation of viroid profiles in individual grapevine plants: novel grapevine yellow speckle viroid 1 mutants show alterations of hairpin I. Journal of General Virology, 77, 155–161.

    Article  PubMed  CAS  Google Scholar 

  • Qi, Y., & Ding, B. (2003). Inhibition of cell growth and shoot development by a specific nucleotide sequence in a noncoding viroid RNA. Plant Cell, 15, 1360–1374.

    Article  PubMed  CAS  Google Scholar 

  • Rezaian, M. A. (1990). Australian grapevine viroid: Evidence for extensive recombination between viroids. Nucleic Acids Research, 18, 1813–1818.

    Article  PubMed  CAS  Google Scholar 

  • Sano, T., Ohshima, K., Uyeda, I., Shikata, E., Meshi, T., & Okada, Y. (1985). Nucleotide sequence of grapevine viroid: A grapevine isolate of hopstunt viroid. Proceedings of the Japan Academy, 61B, 265–268.

    Google Scholar 

  • Szychowski, J. A., McKenry, M. V., Walker, M. A., Wolpert, J. A., Credi, R., & Semancik, J. S. (1995). The vein-banding disease syndrome: a synergistic reaction between grapevine viroids and fanleaf virus. Vitis, 34, 229–232.

    Google Scholar 

  • Velasco, R., Zharkikh, A., Troggio, M., Cartwright, D. A., Cestaro, A., Pruss, D., et al. (2007). A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One, 2, e1326. doi:10.1371/journal.pone.0001326.

    Article  PubMed  Google Scholar 

  • Wan Chow Wah, Y. F., & Symons, R. H. (1997). A high sensitivity RT-PCR assay for the diagnosis of grapevine viroids in field and tissue culture samples. Journal of Virological Methods, 63, 57–69.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Y., Green, L., Woo, Y. M., Owens, R., & Ding, B. (2001). Cellular basis of potato spindle tuber viroid systemic movement. Virology, 279, 69–77.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Our thanks go to A. Schneider and F. Mannini for providing the mother plants. This research was partly funded by Regione Piemonte (Tech4Wine Project) and by the Dipartimento Agroalimentare of the CNR of Italy (A. Leone and D. Mariotti 2008 Award for Advanced Research in Agriculture to the last author).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ivana Gribaudo or Francesco Di Serio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gambino, G., Navarro, B., Vallania, R. et al. Somatic embryogenesis efficiently eliminates viroid infections from grapevines. Eur J Plant Pathol 130, 511–519 (2011). https://doi.org/10.1007/s10658-011-9770-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-011-9770-x

Keywords

Navigation