Skip to main content

Somatic Embryogenesis as a Tool for Studying Grapevine–Virus Interaction

  • Protocol
  • First Online:
Plant Pathology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2536))

Abstract

More than 80 viral species, many of which are not associated with a clear disease or symptomatology, can infect grapevine. The study of grapevine–virus interactions in recent years is playing an increasingly important role and these studies have shown that the molecular and physiological responses to a virus greatly vary depending on the viral strains, the presence of multiple viral infections, the grapevine genotype, and the environment. Moreover, due to the characteristics of the grapevine cultivation and its vegetative propagation, it is very difficult to find healthy plants in vineyards to use them as control in the experiments. Starting from these considerations, in order to investigate the plant–virus interaction in an unbiased way, it is important to set up an experimental system able to control as much of these variables as possible. The protocol here proposed provides the overcome some of these factors by: (i) the production of healthy plants by somatic embryogenesis; (ii) the virus transmission using in vitro micrografting, and (iii) the transfer of in vitro plants to ex-vitro conditions for the analysis of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martelli GP (2018) Where grapevine virology is heading to. In: Proceedings of the 19th congress of International Council for the study of viruses and virus-lile diseases of the Grapevine, Santiago, Chile, 9–12 April 2018, pp 10–15

    Google Scholar 

  2. Martelli GP (2017) An overview on grapevine viruses, viroids, and the diseases they cause. In: Meng B, Martelli G, Golino D, Fuchs M (eds) Grapevine viruses: molecular biology, diagnostics and management. Springer, Cham, pp 31–46

    Chapter  Google Scholar 

  3. Vega A, Gutiérrez RA, Peña-Neira A et al (2011) Compatible GLRaV-3 viral infections affect berry ripening decreasing sugar accumulation and anthocyanin biosynthesis in Vitis vinifera. Plant Mol Biol 77:261–274

    Article  CAS  Google Scholar 

  4. Gambino G, Cuozzo D, Fasoli M et al (2012) Co-evolution between Grapevine rupestris stem pitting-associated virus and Vitis vinifera L. leads to decreased defence responses and increased transcription of genes related to photosynthesis. J Exp Bot 63:5919–5933

    Article  CAS  Google Scholar 

  5. Endeshaw ST, Sabbatini P, Romanazzi G et al (2014) Effects of grapevine leafroll-associated virus 3 infection on growth, leaf gas exchange, yield and basic chemistry of Vitis vinifera L. cv. Cabernet Franc. Sci Hortic 170:228–236

    Article  CAS  Google Scholar 

  6. Montero R, Pérez-Bueno ML, Barón M et al (2016) Alterations in primary and secondary metabolism in Vitis vinifera ‘Malvasia de Banyalbufar’ upon infection with Grapevine Leafroll-associated Virus 3 (GLRaV-3). Physiol Plant 157:442–452

    Article  CAS  Google Scholar 

  7. Chitarra W, Cuozzo D, Ferrandino A et al (2018) Dissecting interplays between Vitis vinifera L. and grapevine virus B (GVB) under field conditions. Mol Plant Pathol 19:2651–2666

    Article  CAS  Google Scholar 

  8. Tobar M, Fiore N, Pérez-Donoso AG et al (2020) Divergent molecular and growth responses of young ‘Cabernet Sauvignon’ (Vitis vinifera) plants to simple and mixed infections with Grapevine rupestris stem pitting-associated virus. Hortic Res 7:2

    Article  CAS  Google Scholar 

  9. Roossinck MJ (2011) The good viruses: viral mutualistic symbioses. Nat Rev Microbiol 9:99–108

    Article  CAS  Google Scholar 

  10. Hily JM, Poulicard N, Mora MA et al (2016) Environment and host genotype determine the outcome of a plant–virus interaction: from antagonism to mutualism. New Phytol 209:812–822

    Article  Google Scholar 

  11. Perrone I, Chitarra W, Boccacci P, Gambino G (2017) Grapevine–virus–environment interactions: an intriguing puzzle to solve. New Phytol 213:983–987

    Article  Google Scholar 

  12. Pantaleo V, Vitali M, Boccacci P et al (2016) Novel functional microRNAs from virus-free and infected Vitis vinifera plants under water stress. Sci Rep 6:20167

    Article  CAS  Google Scholar 

  13. Repetto O, Bertazzon N, De Rosso M et al (2012) Low susceptibility of grapevine infected by GLRaV-3 to late Plasmopara viticola infections: towards understanding the phenomenon. Physiol Mol Plant Pathol 79:55–63

    Article  CAS  Google Scholar 

  14. Gilardi G, Chitarra W, Moine A et al (2020) Biological and molecular interplay between two viruses and powdery and downy mildews in two grapevine cultivars. Hortic Res 7:188

    Article  CAS  Google Scholar 

  15. Dicke M (2016) Plant phenotypic plasticity in the phytobiome: a volatile issue. Curr Opin Plant Biol 32:17–23

    Article  Google Scholar 

  16. Gambino G (2015) Multiplex RT-PCR method for the simultaneous detection of nine grapevine viruses. In: Uyeda I, Masuta C (eds) Plant virology protocols: new approaches to detect viruses and host responses, vol 1236, 3rd edn. Humana Press Inc, pp 39–47

    Chapter  Google Scholar 

  17. Hajizadeh M, Navarro B, Bashir NS et al (2012) Development and validation of a multiplex RT-PCR method for the simultaneous detection of five grapevine viroids. J Virol Methods 179:62–69

    Article  CAS  Google Scholar 

  18. Glasa M, Predajňa L, Komínek P et al (2014) Molecular characterization of divergent Grapevine Pinot gris virus isolates and their detection in Slovak and Czech grapevines. Arch Virol 159:2103–2107

    Article  CAS  Google Scholar 

  19. Gambino G, Bondaz J, Gribaudo I (2006) Detection and elimination of viruses in callus, somatic embryos and regenerated plantlets of grapevine. Eur J Plant Pathol 114:397–404

    Article  Google Scholar 

  20. Gambino G, Navarro B, Vallania R et al (2011) Somatic embryogenesis efficiently eliminates viroid infections from grapevines. Eur J Plant Pathol 13:511–519

    Article  Google Scholar 

  21. Turcsan M, Demian E, Varga T et al (2020) HTS-based monitoring of the efficiency of somatic embryogenesis and meristem cultures used for virus elimination in grapevine. Plan Theory 9:1782

    CAS  Google Scholar 

  22. Dalla Costa L, Malnoy M, Gribaudo I (2017) Breeding next generation tree fruits: technical and legal challenges. Hortic Res 4:7067

    Article  Google Scholar 

  23. Meng B, Venkataraman S, Li C et al (2013) Construction and biological activities of the first infectious cDNA clones of the genus Foveavirus. Virology 435:453–462

    Article  CAS  Google Scholar 

  24. Lovato A, Faoro F, Gambino G et al (2014) Construction of a synthetic infectious cDNA clone of Grapevine Algerian latent virus (GALV-Nf) and its biological activity in Nicotiana benthamiana and grapevine plants. Virol J 11:186

    Article  Google Scholar 

  25. Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87

    Article  CAS  Google Scholar 

  26. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  27. Gribaudo I, Gambino G, Vallania R (2004) Somatic embryogenesis from grapevine anthers: identification of the optimal developmental stage for collecting explants. Am J Enol Vitic 55:427–430

    Google Scholar 

  28. Gambino G, Ruffa P, Vallania R, Gribaudo I (2007) Somatic embryogenesis from whole flowers, anthers and ovaries of grapevine (Vitis spp.). Plant Cell Tissue Organ Cult 90:79–83

    Article  CAS  Google Scholar 

  29. Franks T, He DG, Thomas M (1998) Regeneration of transgenic Vitis vinifera L. Sultana plants: a genotypic and phenotypic analysis. Mol Breed 4:321–333

    Article  CAS  Google Scholar 

  30. Gribaudo I, Gambino G, Boccacci P et al (2017) A multi-year study on the regenerative potential of several Vitis genotypes. Acta Hortic 1155:45–50

    Article  Google Scholar 

  31. Martinelli L, Gribaudo I (2009) Strategies for effective somatic embryogenesis in grapevine: an appraisal. In: Roubelakis-Angelakis KA (ed) Grapevine Molecular Physiology & Biotechnology. Springer, Dordrecht

    Google Scholar 

  32. Torres-Viñals M, Sabaté-Casaseca S, Aktouche N et al (2004) Large-scale production of somatic embryos as a source of hypocotyl explants for Vitis vinifera micrografting. Vitis 43:163–168

    Google Scholar 

  33. Gambino G, Perrone I, Gribaudo I (2008) A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem analysis 19:520–525

    Article  CAS  Google Scholar 

  34. Goussard P, Wiid J, Kasdorf G (1991) The effectiveness of in vitro somatic embryogenesis in eliminating fanleaf virus and leafroll- associated viruses from grapevines. S Afr J Enol Viticult 12:77–81

    Google Scholar 

  35. Gambino G, Di Matteo D, Gribaudo I (2009) Elimination of Grapevine fanleaf virus from three Vitis vinifera cultivars by somatic embryogenesis. Eur J Plant Pathol 123:57–60

    Article  Google Scholar 

  36. Villamor DEV, Ho T, Al Rwahnih M et al (2019) High-throughput sequencing for plant virus detection and discovery. Phytopathology 109:716–725

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Gambino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gambino, G., Perrone, I. (2022). Somatic Embryogenesis as a Tool for Studying Grapevine–Virus Interaction. In: Luchi, N. (eds) Plant Pathology. Methods in Molecular Biology, vol 2536. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2517-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2517-0_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2516-3

  • Online ISBN: 978-1-0716-2517-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics