Skip to main content
Log in

Comparison of the development in planta of a pyrrolnitrin-resistant mutant of Botrytis cinerea and its sensitive wild-type parent isolate

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Botrytis cinerea is able to build-up resistance to pyrrolnitrin, an antibiotic produced by diverse biocontrol agents, possibly compromising the durability of this method of disease control. The development of two near-isogenic lines of B. cinerea differing in their level of resistance to pyrrolnitrin was compared in tomato plants and on PDA medium. In tomato plants, significant differences in the percentage of infected petioles 1 day after inoculation and in symptom progression on petioles and stems were observed between the resistant mutant and the sensitive wild-type parent, suggesting a difference in their level of aggressiveness. Cytohistological investigations revealed that conidia of both near-isogenic lines germinated 6 h after inoculation and mycelium developed within petiole tissues 12 h after inoculation. However, while the wild-type parent isolate spread throughout the petiole and rapidly invaded the stem tissues via the leaf-abscission zone 72 h after inoculation, the pyrrolnitrin-resistant mutant failed to extend beyond petiole tissues to invade the stem. Moreover, 72 h after inoculation, the mycelial development of the pyrrolnitrin-resistant mutant was accompanied by abnormal glycogen accumulation and chlamydospore-like cell formation. In contrast, wild-type parent mycelium was normally structured with intensive colonization of stem tissues. Additionally, on PDA medium the mycelium of the pyrrolnitrin-resistant mutant was less vigorous than the wild-type isolate. These results suggest that the acquisition of pyrrolnitrin-resistance in B. cinerea is accompanied by changes in mycelial structure and reduction in mycelial growth, leading to a noticeable loss of aggressiveness on tomato plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ajouz, S., Nicot, P. C., & Bardin, M. (2010). Adaptation to pyrrolnitrin in Botrytis cinerea and cost of resistance. Plant Pathology, 59, 556–566

    Google Scholar 

  • Asselbergh, B., Curvers, K., França, S. C., Audenaert, K., Vuylsteke, M., Van Breusegem, F., et al. (2007). Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiology, 144, 1863–1877.

    Article  CAS  PubMed  Google Scholar 

  • Avenot, H., Simoneau, P., Iacomi-Vasilescu, B., & Bataille-Simoneau, N. (2005). Characterization of mutations in the two-component histidine kinase gene AbNIK1 from Alternaria brassicicola that confer high dicarboximide and phenylpyrrole resistance. Current Genetics, 47, 234–243.

    Article  CAS  PubMed  Google Scholar 

  • Blakeman, J. P., & Fokkema, N. J. (1982). Potential for biological control of plant diseases on the phyllophane. Annual Review of Phytopathology, 20, 167–192.

    Article  Google Scholar 

  • Büttner, P., Koch, F., Voigt, K., Quidde, T., Risch, S., Blaich, R., et al. (1994). Variations in ploidy among isolates of Botrytis cinerea: implications for genetic and molecular analyses. Current Genetics, 25, 445–450.

    Article  PubMed  Google Scholar 

  • Charles, M. T., Benhamou, N., & Arul, J. (2008). Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit–III. Ultrastructural modifications and their impact on fungal colonization. Postharvest Biology and Technology, 47, 27–40.

    CAS  Google Scholar 

  • Chernin, L., Brandis, A., Ismailov, Z., & Chet, I. (1996). Pyrrolnitrin production by an Enterobacter agglomerans strain with a broad spectrum of antagonistic activity towards fungal and bacterial phytopathogens. Current Microbiology, 32, 208–212.

    Article  CAS  Google Scholar 

  • Clark, C. A., & Lorbeer, J. W. (1976). Comparative histopathology of Botrytis squamosa and Botrytis cinerea on onion leaves. Phytopathology, 66, 1279–1289.

    Article  Google Scholar 

  • Decognet, V., Bardin, M., Trottin-Caudal, Y., & Nicot, P. C. (2009). Rapid change in the genetic diversity of Botrytis cinerea populations after the introduction of strains in a tomato glasshouse. Phytopathology, 99, 185–193.

    Article  CAS  PubMed  Google Scholar 

  • Decognet, V., Ravetti, F., Martin, C., & Nicot, P. C. (2010). Improved leaf pruning reduces development of stem cankers caused by grey mould in greenhouse tomatoes. Agronomy and Sustainable Development, 30, 465–472

    Google Scholar 

  • Dik, A. J., & Wubben, J. P. (2004). Epidemiology of Botrytis cinerea diseases in greenhouses. In Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, pathology and control (pp. 319–333). Dordrecht: Kluwer Academic.

    Google Scholar 

  • El Maâtaoui, M., & Pichot, C. (1999). Nuclear and cell fusion cause polyploidy in the megagametophyte of common cypress, Cupressus sempervirens L. Planta, 208, 345–351.

    Article  Google Scholar 

  • Elad, Y., & Stewart, A. (2004). Microbial control of Botrytis spp. In Y. Elad, B. Williamson, P. Tudzynski, & N. Delan (Eds.), Botrytis: Biology, pathology and control (pp. 223–241). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Faretra, F., & Pollastro, S. (1993). Isolation, characterization, and genetic analysis of laboratory mutants of Botryotinia fuckeliana resistant to the phenylpyrrole fungicide CGA 173506. Mycological Research, 97, 620–624.

    Article  CAS  Google Scholar 

  • Glidewell, S. M., Williamson, B., Goodman, B. A., Chudek, J. A., & Hunter, G. (1997). An NMR microscopic study of grape (Vitis vinifera L.). Protoplasma, 198, 27–35.

    Article  Google Scholar 

  • Govrin, E. M., & Levine, A. (2000). The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Current Biology, 10, 751–757.

    Article  CAS  PubMed  Google Scholar 

  • Harish, S., Manjula, K., & Podile, A. R. (1998). Fusarium udum is resistant to the mycolytic activity of a biocontrol strain of Bacillus subtilis AF 1. FEMS Microbiology Ecology, 25, 385–390.

    Article  CAS  Google Scholar 

  • Holz, G., Coertze, S., & Williamson, B. (2004). The ecology of Botrytis on plant surfaces. In Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, pathology and control (pp. 9–27). Dordrecht, The Netherlands: Kluwer Academic.

    Google Scholar 

  • Janisiewicz, W. J., & Roitman, J. (1988). Biological control of blue mold and grey mold on apple and pear with Pseudomonas cepacia. Phytopathology, 78, 1697–1700.

    Article  Google Scholar 

  • Kars, I., & Van Kan, J. A. L. (2004). Extracellular enzymes and metabolites involved in pathogenesis of Botrytis. In Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, pathology and control (pp. 99–118). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Leroux, P. (2004). Chemical control of Botrytis and its resistance to chemical fungicides. In Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, pathology and control (pp. 195–222). The Netherlands: Kluwer Academic.

    Google Scholar 

  • Li, H. X., & Xiao, C. L. (2008). Characterization of fludioxonil-resistant and pyrimethanil-resistant phenotypes of Penicillium expansum from apple. Phytopathology, 98, 427–435.

    Article  CAS  PubMed  Google Scholar 

  • Liu, W., Leroux, P., & Fillinger, S. (2008). The HOG1-like MAP kinase Sak1 of Botrytis cinerea is negatively regulated by the upstream histidine kinase Bos1 and is not involved in dicarboximide- and phenylpyrrole-resistance. Fungal Genetics and Biology, 45, 1062–1074.

    Article  CAS  PubMed  Google Scholar 

  • Nicot, P. C., Morison, N., & Mermier, M. (2001). Optical filters against grey mould of greenhouse crops. In C. Vincent, B. Panneton, & F. Fleurat-Lessard (Eds.), Physical Control methods in plant protection (pp. 134–145). Paris: Springer Verlag.

    Google Scholar 

  • Prins, T. W., Tudzynski, P., Von Tiedemann, A., Tudzynski, B., Ten Have, A., Hansen, M. E., et al. (2000). Infection strategies of Botrytis cinerea and related necrotrophic pathogens. In J. W. Kronstad (Ed.), Fungal pathology (pp. 33–64). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Rijkenberg, F. H. J., De Leeuw, G. T. N., & Verhoeff, K. (1980). Light and electron microscopy studies on the infection of tomato fruits by Botrytis cinerea. Canadian Journal of Botany, 58, 1394–1404.

    Google Scholar 

  • Rosslenbroich, H. J., & Stuebler, D. (2000). Botrytis cinerea—history of chemical control and novel fungicides for its management. Crop Protection, 19, 557–561.

    Article  CAS  Google Scholar 

  • Schoustra, S. E., Debets, A. J. M., Slakhorst, M., & Hoekstra, R. F. (2006). Reducing the cost of resistance; experimental evolution in the filamentous fungus Aspergillus nidulans. Journal of Evolutionary Biology, 19, 1115–1127.

    Article  CAS  PubMed  Google Scholar 

  • Shah, P., Gutierrez-Sanchez, G., Orlando, R., & Bergmann, C. (2009). A proteomic study of pectin-degrading enzymes secreted by Botrytis cinerea grown in liquid culture. Proteomics, 9, 3126–3135.

    Article  CAS  PubMed  Google Scholar 

  • Staples, R., & Mayer, A. (1995). Putative virulence factors of Botrytis cinerea acting as a wound pathogen. FEMS Microbiology Letters, 134, 1–7.

    Article  CAS  Google Scholar 

  • Unger, C., Kleta, S., Jandl, G., & von Tiedemann, A. (2005). Suppression of the defence-related oxidative burst in bean leaf tissue and bean suspension cells by the necrotrophic pathogen Botrytis cinerea. Journal of Phytopathology, 153, 15–26.

    Article  CAS  Google Scholar 

  • Van Baarlen, P., Legendre, L., & Van Kan, J. A. L. (2004). Plant defence compounds against Botrytis infection. In Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, pathology and control (pp. 143–161). The Netherlands: Kluwer Academic.

    Google Scholar 

  • Van Baarlen, P., Woltering, E. J., Staats, M., & Van Kan, J. A. L. (2007). Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control. Molecular Plant Pathology, 8, 41–54.

    Article  Google Scholar 

  • Viaud, M., Fillinger, S., Liu, W., Polepalli, J. S., Le Pecheur, P., Kunduru, A. R., et al. (2006). A class III histidine kinase acts as a novel virulence factor in Botrytis cinerea. Molecular Plant-Microbe Interactions, 19, 1042–1050.

    Article  CAS  PubMed  Google Scholar 

  • Viret, O., Keller, M., Jaudzems, V. G., & Cole, F. M. (2004). Botrytis cinerea infection of grape flowers: light and electron microscopical studies of infection sites. Phytopathology, 94, 850–857.

    Article  PubMed  Google Scholar 

  • von Tiedemann, A. (1997). Evidence for a primary role of active oxygen species in induction of host cell death during infection of bean leaves with Botrytis cinerea. Physiological and Molecular Plant Pathology, 50, 151–166.

    Article  CAS  Google Scholar 

  • Ziogas, B. N., Markoglou, A. N., & Spyropoulou, V. (2005). Effect of phenylpyrrole-resistance mutations on ecological fitness of Botrytis cinerea and their genetical basis in Ustilago maydis. European Journal of Plant Pathology, 113, 83–100.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Claire Troulet and Gisèle Riqueau for excellent technical assistance in the plant tests. They also acknowledge Isabelle Bornard for the additional microscopical observations of the hyphal structure done in vitro and Veronique Decognet for critically reading the manuscript. This work was supported in part by the Agence Nationale de la Recherche (ANR-Ecoserre project) and by INRA (SPE project). A grant for studies was provided by the Syrian government for Sakhr Ajouz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Bardin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ajouz, S., Bardin, M., Nicot, P.C. et al. Comparison of the development in planta of a pyrrolnitrin-resistant mutant of Botrytis cinerea and its sensitive wild-type parent isolate. Eur J Plant Pathol 129, 31–42 (2011). https://doi.org/10.1007/s10658-010-9638-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-010-9638-5

Keywords

Navigation