Skip to main content
Log in

Aggressiveness and mycotoxin production of eight isolates each of Fusarium graminearum and Fusarium verticillioides for ear rot on susceptible and resistant early maize inbred lines

  • Original Research
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Fusarium graminearum and F. verticillioides are among the most important pathogens causing ear rot of maize in Central Europe. Our objectives were to (1) compare eight isolates of each species on two susceptible inbred lines for their variation in ear rot rating and mycotoxin production across 3 years, and (2) analyse two susceptible and three resistant inbred lines for potential isolate x line interactions across 2 years by silk-channel inoculation. Ear rot rating, zearalenone (ZEA) and deoxynivalenol (DON) concentrations were evaluated for all F. graminearum isolates. In addition, nivalenol (NIV) concentrations were analysed for two NIV producers. Fumonisin (FUM) concentrations were measured for all F. verticillioides isolates. Mean ear rot severity was highest for DON producers of F. graminearum (62.9% of the ear covered by mycelium), followed by NIV producers of the same species (24.2%) and lowest for F. verticillioides isolates (9.8%). For the latter species, ear rot severities differed highly among years (2006: 24%, 2007: 3%, 2008: 7%). Mycotoxin concentrations among isolates showed a broad range (DON: 100–284 mg kg−1, NIV: 15–38 mg kg−1, ZEA: 1.1–49.5 mg kg−1, FUM: 14.5–57.5 mg kg−1). Genotypic variances were significant for isolates and inbred lines in all traits and for both species. Isolate x line interactions were significant only for ear rot rating (P < 0.01) and DON concentration (P < 0.05) of the F. graminearum isolates, but no rank reversals occurred. Most isolates were capable of differentiating the susceptible from the resistant lines for ear rot severity. For resistance screening, a sufficiently aggressive isolate should be used to warrant maximal differentiation among inbred lines. With respect to F. verticillioides infections, high FUM concentrations were found in grains from ears with minimal disease symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Atlin, G. N., Enerson, P. M., McGirr, L. G., & Hunter, R. B. (1983). Gibberella ear rot development and zearalenone and vomitoxin production as affected by maize genotype and Gibberella zeae strain. Canadian Journal of Plant Sciences, 63, 847–853.

    Article  CAS  Google Scholar 

  • Bacon, C. W., Glenn, A. E., & Yates, I. E. (2008). Fusarium verticillioides: managing the endophytic association with maize for reduced fumonisins accumulation. Toxin Reviews, 27, 411–446.

    Article  CAS  Google Scholar 

  • Bai, G.-H., & Shaner, G. (1996). Variation in Fusarium graminearum and cultivar resistance to wheat scab. Plant Disease, 80, 975–979.

    Google Scholar 

  • Bolduan, C., Miedaner, T., Schipprack, W., Dhillon, B. S., & Melchinger, A. E. (2009). Genetic variation for resistance to ear rots and mycotoxins contamination in early European maize inbred lines. Crop Science, 49, 2019–2028.

    Article  Google Scholar 

  • Bottalico, A. (1998). Fusarium diseases of cereals: species complex and related mycotoxin profiles in Europe. Journal of Plant Pathology, 80, 85–103.

    CAS  Google Scholar 

  • Carter, J. P., Rezanoor, H. N., Holden, D., Desjardins, A. E., Plattner, R. D., & Nicholson, P. (2002). Variation in pathogenicity associated with the genetic diversity of Fusarium graminearum. European Journal of Plant Pathology, 108, 573–583.

    Article  CAS  Google Scholar 

  • Cochran, W., & Cox, G. M. (1957). Experimental designs. (Second edition). Wiley, NY, 595 pp.)

  • Cumagun, C. J. R., & Miedaner, T. (2004). Segregation for aggressiveness and deoxynivalenol production of a population of Gibberella zeae causing head blight of wheat. European Journal of Plant Pathology, 110, 789–799.

    Article  CAS  Google Scholar 

  • Desjardins, A. E., Plattner, R. D., Lu, M., & Claflin, L. E. (1998). Distribution of fumonisins in maize ears infected with strains of Fusarium moniliforme that differ in fumonisin production. Plant Disease, 82, 953–958.

    Article  CAS  Google Scholar 

  • Gendloff, E. H., Rossmann, E. C., Casale, W. L., Isleib, T. G., & Hart, L. P. (1986). Components of resistance to Fusarium ear rot in field corn. Phytopathology, 76, 684–688.

    Article  Google Scholar 

  • Görtz, A., Oerke, E. C., Steiner, U., Waalwijk, C., de Vries, I., & Dehne, H. W. (2008). Biodiversity of Fusarium species causing ear rot of maize in Germany. Cereal Research Communications, 36(Suppl. B), 617–622.

    Article  CAS  Google Scholar 

  • Hart, L. P., Braselton, W. E., & Stebbins, T. C. (1982). Production of zearalenone and deoxynivalenol in commercial sweet corn. Plant Disease, 66, 1133–1135.

    CAS  Google Scholar 

  • Jardine, D. J., & Leslie, J. F. (1999). Aggressiveness to mature maize plants of Fusarium strains differing in ability to produce fumonisin. Plant Disease, 83, 690–693.

    Article  CAS  Google Scholar 

  • Kleinschmidt, C. E., Clements, M. J., Maragos, C. M., Pataky, J. K., & White, D. G. (2005). Evaluation of food-grade dent corn hybrids for severity of Fusarium ear rot and fumonisin accumulation in grain. Plant Disease, 89, 291–297.

    Article  Google Scholar 

  • Leslie, J. F., & Summerell, B. A. (2006). The Fusarium Laboratory Manual. Ames: Blackwell Professional.

    Book  Google Scholar 

  • Logrieco, A., Mulé, G., Moretti, A., & Bottalico, A. (2002). Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe. European Journal of Plant Pathology, 108, 597–609.

    Article  CAS  Google Scholar 

  • Löffler, M., Schön, C. C., & Miedaner, T. (2009). Revealing the genetic architecture of FHB resistance in hexaploid wheat (Triticum aestivum L.) by QTL meta-analysis. Molecular Breeding, 23, 473–488.

    Article  CAS  Google Scholar 

  • Maier, F. J., Miedaner, T., Hadeler, B., Felk, A., Salomon, S., Lemmens, M., et al. (2006). Involvement of trichothecenes in fusarioses of wheat, barley and maize evaluated by gene disruption of the trichodiene synthase (Tri5) gene in three field isolates of different chemotype and virulence. Molecular Plant Pathology, 7, 449–461.

    Article  CAS  PubMed  Google Scholar 

  • Mesterházy, Á. (2003). Breeding wheat for Fusarium head blight resistance in Europe. In K. J. Leonard & W. R. Bushnell (Eds.), Fusarium head blight of wheat and barley (pp. 211–240). St. Paul: The American Phytopathological Society.

    Google Scholar 

  • Miedaner, T., Reinbrecht, C., & Schilling, A. G. (2000). Association among aggressiveness, fungal colonization, and mycotoxin production of 26 isolates of Fusarium graminearum in winter rye head blight. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 107, 124–134.

    CAS  Google Scholar 

  • Miedaner, T., Cumagun, C. J. R., & Chakraborty, S. (2008). Population genetics of three important head blight pathogens Fusarium graminearum, F. pseudograminearum and F. culmorum. Journal of Phytopathology, 156, 129–139.

    Article  Google Scholar 

  • Munkvold, G. P. (2003). Epidemiology of Fusarium diseases and their mycotoxins in maize ears. European Journal of Plant Pathology, 109, 705–713.

    Article  CAS  Google Scholar 

  • Munkvold, G. P., Hellmich, R. L., & Showers, W. B. (1997). Reduced Fusarium ear rot and symptomless infection in kernels of maize genetically engineered for European corn borer resistance. Phytopathology, 87, 1071–1077.

    Article  CAS  PubMed  Google Scholar 

  • Naef, A., & Défago, G. (2006). Population structure of plant-pathogenic Fusarium species in overwintered stalk residues from Bt-transformed and non-transformed maize crops. European Journal of Plant Pathology, 116, 129–143.

    Article  CAS  Google Scholar 

  • Nelson, P. E., Desjardins, A. E., & Plattner, R. D. (1993). Fumonisins, mycotoxins produced by Fusarium species: biology, chemistry and significance. Annual Review of Phytopathology, 31, 233–252.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson, P. (2009). Fusarium and Fusarium—Cereal interactions. In Encyclopedia of Life Sciences (ELS). Chichester: John Wiley & Sons, Ltd. Online publication: doi: 10.1002/9780470015902.a0021266 (verified November 11, 2009).

  • Reid, L. M., & Hamilton, R. I. (1996). Effects of inoculation position, timing, macroconidial concentration, and irrigation on resistance of maize to Fusarium graminearum infection through kernels. Canadian Journal of Plant Pathology, 18, 279–285.

    Article  Google Scholar 

  • Reid, L. M., Spaner, D., Mather, D. E., Bolton, A. T., & Hamilton, R. I. (1993). Resistance of maize hybrids and inbreds following silk inoculation with three isolates of Fusarium graminearum. Plant Disease, 77, 1248–1251.

    Google Scholar 

  • Robertson, L. A., Kleinschmidt, C. E., White, D. G., Payne, G. A., Maragos, C. M., & Holland, J. B. (2006). Heritabilities and correlations of Fusarium ear rot resistance and fumonisin contamination resistance in two maize populations. Crop Science, 46, 353–361.

    Article  CAS  Google Scholar 

  • Sano, A., Matsutani, S., Suzuki, M., & Takitani, S. (1987). High performance liquid chromatographic method for determining trichothecene mycotoxins by post-column fluorescence derivatization. Journal of Chromatography, 410, 427–436.

    Article  CAS  PubMed  Google Scholar 

  • Steel, R. G. D., & Torrie, J. H. (1960). Principles and procedures of statistics (p. 481). New York: McGraw-Hill.

    Google Scholar 

  • Utz, H. F. (2004). “Plabstat”. A computer programme for the statistical analysis of plant breeding experiments. (Institute of Plant Breeding, Seed Science, and Population genetics of the Universität Hohenheim, 45 pp.).

  • Van der Plank, J. (1968). Disease resistance of plants (p. 206). New York: Academic.

    Google Scholar 

  • van Eeuwijk, F. A., Mesterhazy, A., Kling, C. I., Ruckenbauer, P., Saur, L., Bürstmayr, H., et al. (1995). Assessing non-specificity of resistance in wheat to head blight caused by inoculation with European strains of Fusarium culmorum, F. graminearum and F. nivale using a multiplicative model for interaction. Theoretical and Applied Genetics, 90, 221–228.

    Article  Google Scholar 

  • Verstraete, F. (2008). European Union Legislation on mycotoxins in food and feed. Overview of the decision-making process and recent and future developments. In J. F. Leslie, R. Bandyopadhyay, & A. Visconti (Eds.), Mycotoxins: Detection methods, management, public health and agricultural trade (pp. 77–99). Wallingford: CABI.

    Chapter  Google Scholar 

  • Yoshizawa, T. (2001). Chromatographic methods for trichothecenes. In M. W. Trucksess & A. E. Pohland (Eds.), Methods in molecular biology, vol. 157, mycotoxin protocols (pp. 115–129). Totowa: Humana.

    Google Scholar 

Download references

Acknowledgments

This research was supported by the ‘Ministerium Ländlicher Raum Baden Württemberg’, grant no. 2005F03. The skilled technical assistance of N. Friedl, F. Mauch, and T. Schmid are gratefully acknowledged. We thank the mentioned colleagues (see Table 1) for sharing their isolates with us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Miedaner.

Additional information

T. Miedaner and C. Bolduan contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miedaner, T., Bolduan, C. & Melchinger, A.E. Aggressiveness and mycotoxin production of eight isolates each of Fusarium graminearum and Fusarium verticillioides for ear rot on susceptible and resistant early maize inbred lines. Eur J Plant Pathol 127, 113–123 (2010). https://doi.org/10.1007/s10658-009-9576-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-009-9576-2

Keywords

Navigation