European Journal of Plant Pathology

, Volume 124, Issue 4, pp 637–657 | Cite as

Antifungal activity of Datura stramonium, Calotropis gigantea and Azadirachta indica against Fusarium mangiferae and floral malformation in mango

  • K. Usha
  • B. Singh
  • P. Praseetha
  • N. Deepa
  • D. K. Agarwal
  • R. Agarwal
  • A. Nagaraja


Floral malformation caused by Fusarium mangiferae is a serious threat to mango cultivation in various countries. Different long-term measures suggested to control it were found to be unsuccessful. Present studies clearly showed strong antifungal activity of a concoction brewed from Datura stramonium, Calotropis gigantea, Azadirachta indica (neem) and cow manure (T1) followed by methanol-water (70/30 v/v) extracts of Datura stramonium, Calotropis gigantea and Azadirachta indica (T2) against Fusarium mangiferae. Optimal control of floral malformation was found in trees sprayed with T1 followed by T2 at bud break stage and again at fruit set stage when compared with the control. All the malformed buds or panicles completely dried two days after foliar spray with T1 or T2. In the trees treated with T1 at fruit set stage, flower abscission was observed from the fourth day after spraying and all flowers dropped by the ninth day without requiring any manual de-blossoming, whereas in the control, the malformed panicles remained green and competed with the growing fruits for plant nutrients. In vitro culture of fresh malformed tissues in MS media along with T1 or T2 showed no growth of any fungus in the media. However, in vitro culture of the completely dry malformed tissues in MS media after foliar treatment with T1 or T2 revealed growth of F. mangiferae on the twenty fifth day indicating that the concoction-brewed compost (T1) or methanol-water (70/30 v/v) extracts (T2) could not completely eliminate the pathogen but helped in controlling malformation by suppressing the activity of F. mangiferae. Mango trees sprayed with T1 and T2 revealed significant differences in percent fruit set and retention when compared with the control. This could be due to observed higher levels of nitrogen, phosphorus, potassium, calcium, magnesium, copper, zinc, iron and manganese in T1, followed by T2 when compared with T3 (control). Among the different fruit quality parameters analysed, the total flavonoids were found to be significantly higher in T1 and T2 when compared with T3. The study proved that the concoction-brewed compost (T1) is effective, inexpensive, easy to prepare and constitutes a sustainable and eco-friendly approach to control floral malformation in mango when it is sprayed at bud break stage and again at fruit set stage. In this present study, exogenous treatment of emerging buds with (Tc) further proved that with increase in the number of malformed panicles/tree the number of buds developing into healthy panicles/tree decrease.


Benzyl adenine Calotropis Datura Floral malformation Fusarium mangiferae Mango Neem Paclobutrazol 


  1. Albrecht, J. A. (1993). Ascorbic acid and retention in lettuce. Journal of Food Quality, 16, 311–316.CrossRefGoogle Scholar
  2. Britz, H., Steenkamp, E. T., Coutinho, T. A., Wingfield, B. D., Marasas, W. F. O., & Wingfield, M. J. (2002). Two new species of Fusarium section Liseola associated with mango malformation. Mycologia, 94, 722–730.CrossRefGoogle Scholar
  3. Bruckner, B., & Blechschmidt, D. (1991). The gibberellin fermentation. Critical Reviews of Biotechnology, 11, 1163–1192.Google Scholar
  4. Chacko, E. K. (1991). Mango flowering—still an enigma!. Acta Horticulturae (ISHS), 291, 12–12.Google Scholar
  5. Chakrabarti, D. K., & Ghosal, S. (1989). The disease cycle of mango malformation induced by Fusarium moniliforme var. subglutinans and the curative effects of mangiferin-metal chelates. Journal of Phytopathology, 125, 238–246.CrossRefGoogle Scholar
  6. Chapman, H. D., & Pratt, P. F. (1961). Methods of analysis for soil, plant and water. Division of Agricultural. Sciences. Berkley, U.S.A: University of California.Google Scholar
  7. Chunjian, L., & Fritz, B. (2003). Stimulatory effect of cytokinins and interaction with IAA on the release of lateral buds of pea plants from apical dominance. Journal of Plant Physiology, 160, 1059–1063.CrossRefGoogle Scholar
  8. Cronin, M. J., Yohalem, D. S., Harris, R. F., & Andrews, J. H. (1996). Putative mechanism and dynamics of inhibition of the apple scab pathogen Venturia inaequalis by compost extracts. Soil Biology and Biochemistry, 28, 1241–1249.CrossRefGoogle Scholar
  9. Crookes, C. A., & Rijkenberg, F. H. J. (1985). Isolation of fungi associated with blossom malformation of mangoes. South African Mango Grower’s Association Research Report, 5, 10–14.Google Scholar
  10. Darvas, J. M. (1987). Control of mango blossom malformation with trunk injection. South African Mango Grower’s Association Yearbook, 7, 21–24.Google Scholar
  11. De, S. (1996). On the morphology and biochemical aspects of starch grains in latex sera of five laticiferous plants. Geobios Jodhpur, 23, 267–268.Google Scholar
  12. Duke, J. A. (1985). Hand book of medicinal herbs, Calotropis gigantea, pp. 90–92. Orlando: CRC.Google Scholar
  13. Duncan, D. B. (1955). Multiple range and multiple “F”tests. Biometrics, 11, 1–42.CrossRefGoogle Scholar
  14. Elad, Y., & Shtienberg, D. (1994). Effect of compost water extracts on grey mould (Botrytis cinerea). Crop Protection, 13, 109–114.CrossRefGoogle Scholar
  15. Freeman, S., Maimon, M., & Pinkas, Y. (1999). Use of GUS transformants of Fusarium subglutinans for determining etiology of mango malformation disease. Phytopathology, 89, 456–461.PubMedCrossRefGoogle Scholar
  16. Freeman, S., Klein-Gueta, D., Korolev, N., & Sztejnberg, A. (2004). Epidemiology and survival of Fusarium mangiferae, the causal agent of mango malformation disease. Acta Horticulturae, 645, 487–491.Google Scholar
  17. Gupta, J., & Ali, M. (2000). Rare chemical constituents from Calotropis gigantea roots. Indian Journal of Pharmacological Science, 62, 29–32.Google Scholar
  18. Hedden, P., & Graebe, L. E. (1985). Inhibition of gibberellin biosynthesis by paclobutrazol in cell-free homogenates of Cucurbita maxima endosperm and Malus pumila embryos. Journal of Plant Growth Regulation, 4, 111–122.CrossRefGoogle Scholar
  19. Hoitink, H. A., Stone, A. G., & Han, D. Y. (1997). Suppression of plant diseases by composts. Hort Science, 32, 184–187.Google Scholar
  20. Issac, R. A., & Johnson, W. C. (1976). Determination of total nitrogen in plant tissue. Journal of Association of Official Annals of Chemistry, 59, 98–100.Google Scholar
  21. Jackson, M. L. (ed). (1958). Soil chemical analysis. Englewood Cliffs, New Jersey, U.S.A: Prentice-Hall.Google Scholar
  22. Jones, J. B., Jr. (Ed.) (1985). A laboratory guide of exercises for conducting soil tests and plant analysis. Athens, U.S.A.: Benton Laboratories.Google Scholar
  23. Kartikar, K. R., & Basu, B. D. (1935). Indian medicinal plants. Lolit Mohan Basu, Vol. I–IV. Dehradun, India: International Book Distributor.Google Scholar
  24. Kitagawa, I., Ru, S. Z., Jony, D. P., Nam, I. B., Yasuyuki, T., Mayasuki, Y., et al. (1992). Indonesian medicinal plants. I.Chemical structures of calotroposides A and B, Two new oxypregnane-oligoglycosides from the root of Calotropis gigantea (Asclepiadaceae). Chemical Pharmacology Bulletin, 40, 2007–2013.Google Scholar
  25. Kiuchi, F., Fukao, Y., Maruyama, T., Tanaka, M., Saraki, T., Mikage, M., et al. (1998). Cytotoxic principles of a Bangladeshi crude drug, akondmul (roots of Calotropis gigantea). Chemical Pharmacology Bulletin, 46, 528–530.Google Scholar
  26. Kumar, J., & Beniwal, S. P. S. (1992). Mango malformation. In J. Kumar, H. S. Chaube, U. S. Singh & A. N. Mukhopadhyay (Eds.), Plant diseases of international importance. Diseases of fruit crop Vol. III, pp. 357–93. Englewood Cliffs, NJ, USA: Prentice Hall.Google Scholar
  27. Kumar, J., Singh, U. S., & Beniwal, S. P. S. (1993). Mango malformation: one hundred years of research. Annual Review of Phytopathology, 31, 217–232.CrossRefGoogle Scholar
  28. Kulkarni, V. J. (1991). Physiology of flowering in mango studied by grafting. Acta Horticulturae (ISHS), 291, 95–104.Google Scholar
  29. Manicom, B. Q. (1989). Blossom malformation of mango. South African Mango Grower’s Association Research Report, 10, 11–12.Google Scholar
  30. Marasas, W. F. O., Ploetz, R. C., Wingfield, M. J., Wingfield, B. D., & Steenkamp, E. T. (2006). Mango malformation disease and the associated Fusarium species. Phytopathology, 96, 667–672.PubMedCrossRefGoogle Scholar
  31. Mather, J. P., & Roberts, P. E. (1998). Introduction to cell and tissue culture: Theory and technique. New York and London: Plenum.Google Scholar
  32. Matsuoka, M. (2003). Gibberellins signaling: how do plant cells respond to GA signals? Journal of Plant Growth Regulation, 22, 123–125.CrossRefGoogle Scholar
  33. Mazza, G., Fukumoto, L., Delaquis, P., Girard, B., & Ewert, B. (1999). Anthocyanins, phenolics, and color of Cabernet Franc, Merlot, and Pinot Noir wines from British Columbia. Journal of Agricultural Food Chemistry, 47, 4009–4017.CrossRefGoogle Scholar
  34. Nelson, P. E., Tousson, T. A., & Marasas, W. F. O. (1983). Fusarium species: An illustrated manual for identification, p. 123. University Park, USA: The Pennsylvania State University Press.Google Scholar
  35. O’Donnell, K., Cigelnik, E., & Nirenberg, H. I. (1998). Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia, 90, 465–493.CrossRefGoogle Scholar
  36. O’Donnell, K., Nirenberg, H. I., Aoki, T., & Cigelnik, E. (2000). A multigene phylogeny of the Gibberella fujikuroi species complex: detection of additional phylogenetically distinct species. Mycoscience, 41, 61–78.CrossRefGoogle Scholar
  37. Pal, G., & Sinha, N. K. (1980). Isolation, crystallization and properties of calotropins D1 and D2 from Calotropis gigantea. Archives of Biochemistry and Biophysics, 202, 321–329.PubMedCrossRefGoogle Scholar
  38. Ploetz, R. C. (2001). Malformation: A unique and important disease of mango, Mangifera indica L. In B. A. Summerell, J. F. Leslie, D. Backhouse, W. L. Bryden & L. W. Burgess (Eds.), Fusarium: Paul E. Nelson memorial symposium, pp. 233–247. St. Paul, MN: The American Phytopathological Society.Google Scholar
  39. Ploetz, R. C., & Gregory, N. (1993). Mango malformation in Florida: distribution of Fusarium subglutinans in affected trees, and relationships among strains within and among different orchards. Acta Horticulturae, 34, 388–394.Google Scholar
  40. Ploetz, R., Zheng, Q. I., Vazquez, A., & Abdel, S. M. A. (2002). Current status and impact of mango malformation in Egypt. International Journal of Pest Management, 48, 279–285.CrossRefGoogle Scholar
  41. Quinlan, J. D. (1981). New chemical approaches to the control of fruit tree form and size. Acta. Horticulturae, 120, 95–106.Google Scholar
  42. Rahman, M. A., & Wilcock, C. C. (1991). A report on flavonoid investigation in some Bangladesh Asclepiads, Bangladesh. Journal of Botany, 20, 175–178.Google Scholar
  43. Ram, S. (1999). Hormonal physiology of flowering in ‘Dashehari’ mango. Journal of Applied Horticulture, 1, 84–88.Google Scholar
  44. Ranganna, S. (1986). Hand book of analyses and quality control for fruits and vegetable products. New Delhi: McGraw Hill.Google Scholar
  45. Richards, D. E., King, K. E., Ait-ali, T., & Harber, N. P. (2001). How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling. Annual Review of Plant Physiology & Plant Molecular Biology, 52, 67–88.CrossRefGoogle Scholar
  46. Rybakov, Y. A., & Bourd, G. I. (1991). Nitrogen regulation of gibberellin biosynthesis enzyme complex in Fusarium moniliforme. Journal of Biotechnology, 21, 219–228.CrossRefGoogle Scholar
  47. Saeed, A., & Schlosser, E. (1972). Effect of some cultural practices on the incidence of mango malformation. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 79, 349–51.Google Scholar
  48. Scheuerell, S., & Mahaffee, W. (2002). Compost Tea: principles and prospects for plant disease control. Compost Science and Utilization, 10, 313–338.Google Scholar
  49. Schmulling, T. (2002). New insights into the functions of cytokinins in plant development. Journal of Plant Growth Regulation, 21, 40–49.PubMedCrossRefGoogle Scholar
  50. Sen, S., & Sahu, N. P. (1992). Flavonol glycosides from Calotropis gigantea. Phytochemistry, 31, 2919–2921.PubMedCrossRefGoogle Scholar
  51. Shibuya, H., & Zhang, R. S. (1992). Indonesian medicinal plants: V. Chemical structures of calotroposides C, D, E, F, and G: five additional new oxypregnane-oligoglycosides from the root of Calotropis gigantea (Asclepiadaceae). Chemical Pharmacological Bulletin, Tokyo, 40, 2647–2653.Google Scholar
  52. Shü, Z. H. (1999). Effects of temperature on the flowering biology and fertilization of mangoes (Mangifera indica L.). Journal of Applied Horticulture, 1, 149–150.Google Scholar
  53. Singh, S. (2003). Effects of aqueous extract of neem seed kernel and azadirachtin on the fecundity, fertility and post-embryonic development of the melonfly, Bactrocera cucurbitae and the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Journal of Applied Entomology, 127, 540–547.CrossRefGoogle Scholar
  54. Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.Google Scholar
  55. Steenkamp, E. T., Wingfield, B. D., Coutinho, T. A., Wingfield, M. J., & Marasas, W. F. O. (1999). Differentiation of Fusarium subglutinans f.sp. pini by histone gene sequence data. Applied Environmental Microbiology, 65, 3401–3406.Google Scholar
  56. Steenkamp, E. T., Britz, H., Coutinho, T. A., Wingfield, B. D., Marasas, W. F. O., Wingfield, B. D., et al. (2000). Molecular characterization of Fusarium subglutinans associated with mango malformation. Molecular Plant Pathology, 1, 187–193.CrossRefGoogle Scholar
  57. Stindt, A., & Weltzien, H. C. (1988). Der Einsatz von kompostextrakten zur bekampfun von Botrytis cinerea an erdbeeren ergebnisse des versuchsjahres. Gesunde Pflanzen, 40, 451–454.Google Scholar
  58. Summonwar, A. S., Ray Chaudhury, S. P., & Pathak, S. P. (1966). Association of fungus, Fusarium moniliforme Scheld. with malfunction in mango (Mangifera indica L.). Indian Journal of Phytopathology, 19, 227–228.Google Scholar
  59. Thom, M., & Moller, S. (1988). Untersuchungen zur wirksamkeit wasseriger Kompostextrakte gegnuber edem erreger des echten mehltaus an gurken. Thesis. Gesamthochschule Kassel.Google Scholar
  60. Usha, K. (2005). Studies on mango malformation. New Delhi: Indian Agricultural Research Institute, Annual Report.Google Scholar
  61. Usha, K., & Singh, B. (2000). Fusicoccin as an inducer of mango malformation. Journal of Plant Biology (India), 27, 313–315.Google Scholar
  62. Usha, K., Gambhir, P. N., Sharma, H. C., Goswami, A. M., & Singh, B. (1994). Relationship of molecular mobility of water with floral malformation in mango as assessed by NMR. Scientia Horticulturae, 59, 291–295.CrossRefGoogle Scholar
  63. Usha, K., Goswami, A. M., Sharma, H. C., Pande, P. C., & Singh, B. (1997). Scanning electron microscopic studies on floral malformation in mango. Scientia Horticulturae, 71, 127–130.CrossRefGoogle Scholar
  64. Varma, A., Lele, V. C., Raychoudhuri, S. P., Ram, A., & Sang, A. (1974). Mango malformation: a fungal disease. Phytopathologische Zeitschrift, 79, 254–257.CrossRefGoogle Scholar
  65. Weltzein, H. C. (1991). Biocontrol of foliar fungal diseases with compost extracts. In H. J. Andrews & S. H. Susan (Eds.), Microbial ecology of leaves, pp. 430–450. New York, NY: Springer-Verlag.Google Scholar
  66. Weltzien, H. C., & Ketterer, N. (1986). Control of downy mildew, Plasmopara viticola (de Bary) Berlese et de Toni, on grapevine leaves through water extracts from composted organic wastes. Journal of Phytopathology, 116, 186–188.CrossRefGoogle Scholar
  67. Youssaf, S. A., Maymon, M., Zveibil, A., KleinGueta, D., Sztejnberg, A., Shalaby, A., & Freeman, S. (2006). Epidemiological aspects of mango malformation disease caused by Fusarium mangiferae and source of infection in seedlings cultivated in orchards in Egypt. Plant Pathology. doi: 10.1111/j,1365-3059.2006.01548.x
  68. Zafar, I., Mehboob-ur-Rahman, Altaf, A. D., Ahmad, S., & Yusuf, Z. (2006). RAPD analysis of Fusarium isolates causing “Mango Malformation” disease in Pakistan. World Journal of Microbiology and Biotechnology, 22, 1161–1167.Google Scholar
  69. Zeevaart, J. A. D., Gage, D. A., & Taton, M. (1993). Gibberellin A1 is required for stem elongation in spinach under long-day conditions. Proceedings of the National Academy of Science, USA, 90, 7401–7405.CrossRefGoogle Scholar
  70. Zheng, Q., & Ploetz, R. C. (2002). Genetic diversity in the mango malformation pathogen and development of a PCR assay. Plant Pathology, 51, 208–16.CrossRefGoogle Scholar

Copyright information

© KNPV 2009

Authors and Affiliations

  • K. Usha
    • 1
  • B. Singh
    • 2
  • P. Praseetha
    • 2
  • N. Deepa
    • 3
  • D. K. Agarwal
    • 4
  • R. Agarwal
    • 4
  • A. Nagaraja
    • 1
  1. 1.Division of Fruits and Horticultural TechnologyIndian Agricultural Research InstituteNew DelhiIndia
  2. 2.NRLIndian Agricultural Research InstituteNew DelhiIndia
  3. 3.Division of Post Harvest TechnologyIndian Agricultural Research InstituteNew DelhiIndia
  4. 4.Division of Plant PathologyIndian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations