Skip to main content

Advertisement

Log in

Spray treatments combined with climate modification for the management of Leveillula taurica in sweet pepper

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The effects of several spray and climate treatments on Leveillula taurica were tested under controlled and commercial greenhouse conditions either alone or combined with a climate treatment. Ampelomyces quisqualis AQ10 inhibited the germination of conidia on leaves, but not on glass. Trichoderma harzianum T39 inhibited germination on both surfaces. Neither the examined biological control agents (BCAs) nor the two tested mineral oils (AddQ and JMS Stylet-Oil) affected the viability of conidia. Sulphur drastically limited the germination and viability of L. taurica. In experiments at 15–25°C, AQ10 alone reduced hyphal leaf colonisation at 25°C. T. harzianum T39 significantly reduced leaf colonisation at all temperatures but significantly reduced disease only at 20–25°C. The oils significantly reduced leaf colonisation and sulphur reduced both leaf colonisation and disease at all temperatures. Results were confirmed in an experimental greenhouse. In a field experiment, azoxystrobin, polyoxin AL, neem extract, and T39 were effective; sulphur was superior to them. Under severe epidemic conditions the disease had a negative impact on yield; late fungicide treatments at spring-time were found unnecessary. Chemical sprays applied in alternation was compared with the ‘friendly’ spray regime (alternation of Heliosoufre, T. harzianum T39 + JMS Stylet oil, A. quisqualis AQ10+AddQ oil and Neemgard) in two climates i.e. (i.) day warm climate and (ii.) regular (cool) day climate regimes. In the warm climate, there was no significant difference in the performance of the ‘friendly’ spray regime and the chemical spray regime. However, in the cooler climate, the ‘friendly’ spray programme was not as effective as the chemical spray programme. It was concluded that a change in the greenhouse climate may affect the development of powdery mildew and, at the same time, promote the activity of BCAs and render a pathogen more vulnerable to these control agents, allowing for better disease suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amsalem, L., Freeman, S., Rav-David, D., Nitzani, Y., Sztejnberg, A., Pertot, I., et al. (2005). Biology and epidemiology of powdery mildew caused by Sphaerotheca macularis on strawberry. European Journal of Plant Pathology, 114, 283–292. doi:10.1007/s10658-005-5804-6.

    Article  Google Scholar 

  • Askary, H., Benhamou, N., & Brodeur, J. (1997). Ultrastructural and cytochemical investigations of the antagonistic effect of Verticillium lecanii on cucumber powdery mildew. Phytopathology, 87, 359–368. doi:10.1094/PHYTO.1997.87.3.359.

    Article  PubMed  CAS  Google Scholar 

  • Brand, M., Mesika, Y., Elad, Y., Sztejnberg, A., Rav-David, D., & Nitzani, Y. (2002). Effect of greenhouse climate on biocontrol of powdery mildew (Leveillula taurica) in sweet pepper and prospects for integrated disease management. IOBC/WPRS Bulletin, 25(10), 69–72.

    Google Scholar 

  • Bélanger, R. R., Dik, A. J., & Menzies, J. G. (1997). Powdery mildews: Recent advances toward integrated control. Chapter 6. In G. J. Boland, & L. D. Kuykendall (Eds.), Plant-microbe interactions and biological control. New York: Marcell Dekker Inc.

    Google Scholar 

  • Bélanger, R. R., Labbé, C., & Jarvis, W. R. (1994). Commercial-scale control of rose powdery mildew with a fungal antagonist. Plant Disease, 78, 420–424.

    Google Scholar 

  • Benuzzi, M., Ladurner, E., & Mayoral, F. (2006). Efficacy of Ampelomyces quisqualis isolate M 10 (AQ 10®) against powdery mildews (Erysiphaceae) on protected crops. Bulletin OILB/SROP, 29(4), 275–280.

    Google Scholar 

  • Daubèze, A. M., Hennart, J. W., & Palloix, A. (1995). Resistance to Leveillula taurica in pepper (Capsicum annuum) is oligogenically controlled and stable in Mediterranean regions. Plant Breeding, 114, 327–332. doi:10.1111/j.1439-0523.1995.tb01243.x.

    Article  Google Scholar 

  • Delp, C. J. (1954). Effect of temperature and humidity on grape powdery mildew fungus. Phytopathology, 44, 615–626.

    Google Scholar 

  • De Souza, V. L., & Cafe Filho, A. C. (2003). Effect of chemical control on the progress of sweet pepper powdery mildew under greenhouse conditions. Summa Phytopathologica, 29, 317–322.

    Google Scholar 

  • Dik, A. J., Van der Gaag, D. J., & Van Slooten, M. A. (2003). Efficacy of salts against fungal diseases in glasshouse crops. Comm. Agric. Applied Biological Sciences, 68(4b), 475–485.

    CAS  Google Scholar 

  • Dik, A. J., & Van der Staay, M. (1995). The effect of Milsana on cucumber powdery mildew under Dutch conditions. Mededelingen Faculteit Landbouwwetenschappen Rijksuniversiteit Gent, 59(3a), 1027–1034.

    Google Scholar 

  • Dik, J. A., Ceglarska, E., & Ilovai, Z. (1999). Sweet peppers. In R. Albajes, M. L. Gullino, J. C. van Lenteren, & Y. Elad (Eds.), Integrated pest and disease management in greenhouse crops (pp. 473–485). The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Elad, Y., & Freeman, S. (2002). Biological control of fungal plant pathogens. In F. Kempken (Ed.), The Mycota, a comprehensive treatise on fungi as experimental systems for basic and applied research. XI. agricultural applications (pp. 93–109). Germany: Springer, Heidelberg.

    Google Scholar 

  • Elad, Y., Kirshner, B., Yehuda, N., & Sztejnberg, A. (1998). Management of powdery mildew and gray mould of cucumber by Trichoderma harzianum T39 and Ampelomyces quisqualis AQ10. Biological Control, 43, 241–251.

    Google Scholar 

  • Elad, Y., Malathrakis, N., & Dik, A. (1996). Biological control of Botrytis-incited diseases and powdery mildews in greenhouse crops. Crop Protection (Guildford, Surrey), 15, 229–240. doi:10.1016/0261-2194(95)00129-8.

    Article  Google Scholar 

  • Elad, Y., Messika, Y., Brand, M., Rav David, D., & Sztejnberg, A. (2007). Effect of microclimate on Leveillula taurica powdery mildew of sweet pepper. Phytopathology, 97, 813–824. doi:10.1094/PHYTO-97-7-0813.

    Article  PubMed  Google Scholar 

  • Elad, Y., Zimand, G., Zaqs, Y., Zuriel, S., & Chet, I. (1993). Biological and integrated control of cucumber grey mould (Botrytis cinerea) under commercial greenhouse conditions. Plant Pathology, 42, 324–332. doi:10.1111/j.1365-3059.1993.tb01508.x.

    Article  CAS  Google Scholar 

  • Fallik, E., Ziv, O., Grinberg, S., Alkalai, S., & Klein, J. D. (1997). Bicarbonate solutions control powdery mildew (Leveillula taurica) on sweet red pepper and reduce development of postharvest fruit rotting. Phytoparasitica, 25, 41–43.

    Article  Google Scholar 

  • Fry, W. E. (1978). Quantification of general resistance of potato cultivars and fungicide effects for integrated control of potato late blight. Phytopathology, 68, 1650–1655.

    Article  CAS  Google Scholar 

  • Guzman-Plazola, R. A., Davis, R. M., & Marois, J. J. (2003). Effects of relative humidity and high temperature on spore germination and development of tomato powdery mildew (Leveillula taurica). Crop Protection (Guildford, Surrey), 22, 1157–1168. doi:10.1016/S0261-2194(03)00157-1.

    Article  Google Scholar 

  • Homma, Y., Arimoto, Y., Takahashi, H., Ishikawa, T., Matsuda, I., & Misato, T. (1980). Studies on pepper powdery mildew. I. Conidial germination, hyphal elongation and hyphal penetration on pepper leaf. Annals of the Phytopathological Society of Japan, 46, 140–149.

    Google Scholar 

  • Jacob, D., Rav David, D., Sztjenberg, A., & Elad, Y. (2008). Conditions for development of powdery mildew of tomato caused by Oidium neolycopersici. Phytopathology, 98, 270–281. doi:10.1094/PHYTO-98-3-0270.

    Article  PubMed  CAS  Google Scholar 

  • Jamar, L., & Lateur, M. (2007). Strategies to reduce copper use in organic apple production. Acta Horticulturae, 737, 113–120.

    CAS  Google Scholar 

  • Jhooty, J. S., & McKeen, W. E. (1965). Studies on powdery mildew of strawberry caused by Sphaerotheca macularis. Phytopathology, 55, 281–285.

    Google Scholar 

  • Kasselaki, A. M., Shaw, M. W., Malathrakis, N. E., & Haralambous, J. (2006). Control of Leveillula taurica in tomato by Acremonium alternatum is by induction of resistance, not hyperparasitism. European Journal of Plant Pathology, 115, 263–267. doi:10.1007/s10658-006-9010-y.

    Article  Google Scholar 

  • Kunoh, H., Kuhno, M., Tashiro, S., & Ishizaki, H. (1979). Studies of the powdery-mildew fungus, Leveillula taurica, on green pepper. II. Light and electron microscopic observation of the infection process. Canadian Journal of Botany, 57, 2501–2508. doi:10.1139/b79-296.

    Article  Google Scholar 

  • Lafortune, D., Beramis, M., Daubeze, A. M., Boissot, N., & Palloix, A. (2005). Partial resistance of pepper to bacterial wilt is oligogenic and stable under tropical conditions. Plant Disease, 89, 501–506. doi:10.1094/PD-89-0501.

    Article  CAS  Google Scholar 

  • Malathrakis, N. E., Markellou, E., Fanouraki, M. N., Kasselaki, A. M., Koumaki, C. M., Schmitt, A., et al. (2002). Efficacy of Milsana® (1999), a formulated plant extract from Reynoutria sachalinensis, against powdery mildew of tomato (Leveillula taurica). IOBC/WPRS Bulletin, 25(10), 175–178.

    Google Scholar 

  • Matheron, M. E., & Porchas, M. (2007). Comparative performance and preservation of chemical management tools for powdery mildew on muskmelon. Acta Horticulturae, 731, 357–361.

    CAS  Google Scholar 

  • McGrath, M. T. (2007). Managing cucurbit powdery mildew and fungicide resistance. Acta Horticulturae, 731, 211–216.

    Google Scholar 

  • McGrath, M. T., & Shishkoff, N. (2000). Control of cucurbit powdery mildew with JMS Stylet-Oil. Plant Disease, 84, 989–993. doi:10.1094/PDIS.2000.84.9.989.

    Article  Google Scholar 

  • Millard, P. J., Roth, B. L., Thi, H. P. T., Yue, S. T., & Haugland, R. P. (1997). Development of the FUN-1 family of fluorescent probes for vacuole labeling and viability testing of yeasts. Applied and Environmental Microbiology, 63, 2897–2905.

    PubMed  CAS  Google Scholar 

  • Okayama, K., Nakano, T., Matsutani, S., & Sugimura, T. (1995). A simple and reliable method for evaluating the effectiveness of fungicides for control of powdery mildew (Sphaerotheca macularis) on strawberry. Annals of the Phytopathological Society of Japan, 61, 536–540.

    Google Scholar 

  • Palti, J. (1988). The Leveillula mildews. Botanical Review, 54, 423–535. doi:10.1007/BF02858418.

    Article  Google Scholar 

  • Pasini, C., D, , Aquila, F., Curir, P., & Gullino, M. L. (1997). Effectiveness of antifungal compounds against rose powdery mildew (Sphaerotheca pannosa var. rosae) in glasshouses. Crop Protection (Guildford, Surrey), 16, 251–256. doi:10.1016/S0261-2194(96)00095-6.

    Article  CAS  Google Scholar 

  • Peries, O. S. (1962). Studies on strawberry mildew caused by Sphaerotheca macularis (Wallr. ex Fries) Jaczewski, I. Biology of the fungus. The Annals of Applied Biology, 50, 211–224. doi:10.1111/j.1744-7348.1962.tb06004.x.

    Article  Google Scholar 

  • Reuveni, R., Perl, M., & Rotem, J. (1974). The effect of Leveillula taurica on leaf abscissions in peppers. Journal of Phytopathology, 80, 79–84. doi:10.1111/j.1439-0434.1974.tb02732.x.

    Article  Google Scholar 

  • Reuveni, R., Dor, G., & Reuveni, M. (1998). Local and systemic control of powdery mildew (Leveillula taurica) on pepper plants by foliar spray of mono-potassium phosphate. Crop Protection (Guildford, Surrey), 17, 703–709. doi:10.1016/S0261-2194(98)00077-5.

    Article  CAS  Google Scholar 

  • Sato, T., Takiguchi, T., Matsuura, K., Narimatsu, J., & Mizuno, N. (2003). Effects of high temperature caused by non ventilation of greenhouse on the growth and prevention of disease and insect damage in summer grown cucumber. Journal of the Japanese Society for Horticultural Science, 72, 56–63.

    Article  Google Scholar 

  • Smith, R. F., Koike, S. T., Davis, M., Subbarao, K., & Laemmlen, F. (1999). Several fungicides control powdery mildew in peppers. California Agriculture, 53(6), 40–43.

    Article  Google Scholar 

  • Spencer, W. (1998). The use of sulfur in agricultural pesticide markets: US and world markets. Agriculture and Food Industry High Technology, 9, 45–47.

    Google Scholar 

  • Shtienberg, D., & Dreishpoun, J. (1991). Suppression of Alternaria leaf spot in Pima cotton by systemic fungicides. Crop Protection (Guildford, Surrey), 10, 381–385. doi:10.1016/S0261-2194(06)80028-1.

    Article  CAS  Google Scholar 

  • Sztejnberg, A., Galper, S., Mazar, S., & Lisker, N. (1989). Ampelomyces quisqualis for biological and integrated control of powdery mildews in Israel. Journal of Phytopathology, 124, 285–295.

    CAS  Google Scholar 

  • Sztejnberg, A., Galper, S., & Lisker, N. (1990). Conditions for pycnidial production and spore formation by Ampelomyces quisqualis. Canadian Journal of Microbiology, 36, 193–198.

    Article  CAS  Google Scholar 

  • Tsror, L., Lebiush-Mordechai, S., & Shapira, N. (2003). Control of powdery mildew on organic pepper. IOBC/WPRS Bulletin, 26(10), 121–124.

    Google Scholar 

  • Verhaar, M. A., Hijwegen, T., & Zadoks, J. C. (1996). Glasshouse experiments on biocontrol of cucumber powdery mildew (Sphaerotheca fuliginea) by the mycoparasites Verticillium lecanii and Sporothrix rugulosa. Biological Control, 6, 353–360. doi:10.1006/bcon.1996.0045.

    Article  Google Scholar 

  • Wheeler, B. E. J. (1978). Rose mildew. In D. M. Spencer (Ed.), The powdery mildews (pp. 413–430). New York: Academic Press Inc.

    Google Scholar 

  • Xu, X. M. (1999a). Effects of temperature on the latent period of the rose powdery mildew pathogen, Sphaerotheca pannosa. Plant Pathology, 48, 662–667. doi:10.1046/j.1365-3059.1999.00385.x.

    Article  Google Scholar 

  • Xu, X. M. (1999b). Effects of temperature on the length of the incubation period of rose powdery mildew (Sphaerotheca pannosa var. rosae). European Journal of Plant Pathology, 105, 13–21. doi:10.1023/A:1008666605593.

    Article  Google Scholar 

  • Ziv, O., & Zitter, T. A. (1992). Effect of bicarbonates and film-forming polymers on cucurbit foliar diseases. Plant Disease, 76, 513–517.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Chief Scientist of the Israeli Ministry of Agriculture, the Israeli Vegetable Growers Board and the Dutch-Israeli Agricultural Research Fund (DIARP). The help and cooperation of A. J. Dik, (The Netherlands) and Y. Posalski, E. Taari, H. Yekhezkel, M. Targerman, D. Shmuel, E. Matan, A. Salpoi, L. Cordoba, E. Dayan, M. Fuchs, and Y. Cohen from R&D South, Besor Research Station is acknowledged. Contribution No. 537/08 from the ARO, The Volcani Center, Bet Dagan, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yigal Elad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brand, M., Messika, Y., Elad, Y. et al. Spray treatments combined with climate modification for the management of Leveillula taurica in sweet pepper. Eur J Plant Pathol 124, 309–329 (2009). https://doi.org/10.1007/s10658-008-9421-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-008-9421-z

Keywords

Navigation