Skip to main content

Advertisement

Log in

Management of resident plant growth-promoting rhizobacteria with the cropping system: a review of experience in the US Pacific Northwest

  • Full Research Paper
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

In view of the inconsistent performance of single or mixtures of plant growth-promoting rhizobacteria (PGPR) strains formulated for commercial use, and the high cost of regulatory approval for either a proprietary strain intended for disease control or a crop plant transformed to express a disease-suppressive or other growth-promoting PGPR trait, management of resident PGPR with the cropping system remains the most practical and affordable strategy available for use of these beneficial rhizosphere microorganisms in agriculture. A cropping system is defined as the integration of management (agricultural) practices and plant genotypes (species and varieties) to produce crops for particular end-uses and environmental benefits. The build-up in response to monoculture cereals of specific genotypes of Pseudomonas fluorescens with ability to inhibit Gaeumannomyces graminis var. tritici by production of 2,4-diacetylphoroglucinol (DAPG), accounting for take-all decline in the US Pacific Northwest, illustrates what is possible but apparently not unique globally. Other crops or cropping systems enrich for populations of the same or other genotypes of DAPG-producing P. fluorescens or, possibly and logically, genotypes with ability to produce one or more of the five other antibiotic or antibiotic-like substances inhibitory to other soilborne plant pathogens. In the U.S Pacific Northwest, maintenance of threshold populations of resident PGPR inhibitory to G. graminis var. tritici is the centerpiece of an integrated system used by growers to augment take-all decline while also limiting damage caused by pythium and rhizoctonia root rot and fusarium root and crown rot in the direct-seed (no-till) cereal-intensive cropping systems while growing varieties of these cereals (winter and spring wheat, barley and triticale) fully susceptible to all four root diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahl, P. C., Voisard, C., & Defago, G. (1986). Iron bound-siderophores, cyanic acid, and antibiotics involved in suppression of Thielaviopsis basicola by a Pseudomonas fluorescens strain. Journal of Phytopathology, 116, 121–134.

    CAS  Google Scholar 

  • Bailey, D. J., Paveley, N., Pillinger, C., Foulkes, J., Spink, J., & Gilligan, C. A. (2005). Epidemiology and chemical control of take-all on seminal and adventitious roots of wheat. Phytopathology, 95, 62–98.

    Article  PubMed  CAS  Google Scholar 

  • Bakker, P. A. H. M. (1989). Siderophore-mediated plant growth promotion and colonization of roots by strains of Pseudomonas spp. Dissertation, Willie CommelinScholten Phytopathological Laboratory, Department of Plant Pathology, State University Utrecht, Javalaan 20, 3742 Baarn, The Netherlands.

  • Bangera, M. G., & Thomashow, L. S. (1999). Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. Journal of Bacteriology, 181, 3155–3163.

    PubMed  CAS  Google Scholar 

  • Bateman, G. L., Gutteridge, R. J., & Jenkyn, J. F. (2004). Take-all and grain yields in sequences of winter wheat crops testing fluquinconazole seed treatment applied in different combinations of years. Annals of Applied Biology, 145, 317–330.

    Article  CAS  Google Scholar 

  • Beale R.E., Phillion, D.P., Headrick, J.M., O’Reilly, P., & Cox, J. (1998). MON6550: A unique fungicide for control of take-all in wheat. Paper presented at the 1998 Brighton Conference – Pest and Diseases, British Crop Protection Council Symposium Proceedings, Farnham, Surrey, UK.

  • Blouin Bankhead, S., Landa, B. B., Lutton, E., Weller, D. M., & McSpadden Gardner, B. B. (2004). Minimal changes in rhizobacterial population structure following root colonization by wild type and transgenic biocontrol strains. FEMS Microbiology Ecology, 49, 307–318.

    Article  CAS  Google Scholar 

  • Cook, R. J. (1980). Fusarium foot rot of wheat and its control in the Pacific Northwest. Plant Disease, 64, 1061–1066.

    Article  Google Scholar 

  • Cook, R. J. (1981). The influence of rotation crops on take-all decline phenomenon. Phytopathology, 71, 189–192.

    Google Scholar 

  • Cook, R. J. (1993). Making greater use of introduced microorganisms for biological control of plant pathogens. Annual Review of Phytopathology, 31, 53–80.

    Article  PubMed  CAS  Google Scholar 

  • Cook, R. J. (2003). Take-all of wheat. Physiological and Molecular Plant Pathology, 62, 87–98.

    Article  Google Scholar 

  • Cook, R. J. (2006). Toward cropping systems that enhance productivity and sustainability. Proceedings National Academy of Sciences, 103, 18389–18394.

    Article  CAS  Google Scholar 

  • Cook, R. J. (2007). Take-all decline: A model system in biological control and clue to the success of intensive cropping. In C. Vincent, M. Goettel & G. Lazarovits (Eds.), Biological control a Global Perspective: case studies from around the world. CABI Publishing: UK (in press).

  • Cook, R. J., & Baker, K. F. (1983). The Nature and Practice of Biological Control of Plant Pathogens. St. Paul, MN: American Phytopathological Society.

    Google Scholar 

  • Cook, R. J., Chamswarng, C., & Tang, W.-H. (1990). Influence of wheat chaff and tillage on Pythium populations and Pythium damage to wheat. Soil Biology Biochemistry, 22, 939–947.

    Article  Google Scholar 

  • Cook, R. J., & Haglund, W. A. (1991). Wheat yield depression associated with conservation tillage caused by root pathogens in the soil not phytotoxins from the straw. Soil Biology Biochemistry, 23, 1125–1132.

    Article  CAS  Google Scholar 

  • Cook, R. J., Ownley, B. H., Zhang, H., & Vakoch, D. (2000). Influence of paired-row spacing and fertilizer placement on yield and root diseases of direct-seeded wheat. Crop Science, 40, 1079–1087.

    Article  Google Scholar 

  • Cook, R. J., & Rovira, A. D. (1976). The role of bacteria in the biological control of Gaeumannomyces graminis by suppressive soils. Soil Biology Biochemistry, 8, 269–273.

    Article  Google Scholar 

  • Cook. R. J., Thomashow, L. S., Weller, D. M., Fujimoto, D. K., Mazzola, M., Bangera, G., et al. (1995). Molecular mechanisms of defense by rhizobacteria against root disease. Proceedings National Academy Sciences, 92, 4197–4201.

    Article  CAS  Google Scholar 

  • Cook, R. J., & Veseth, R. J. (1991). Wheat Health Management. St. Paul, MN: APS.

    Google Scholar 

  • Cook, R. J., Weller, D. M., El-Banna, A. Y., Vakoch, D., & Zhang, H. (2002). Yield responses of direct-seeded wheat to fungicide and rhizobacteria seed-treatments. Plant Disease, 86, 780–784.

    Article  CAS  Google Scholar 

  • Fenton, A. M., Stephens, P. M., Crowley, J., O’Callaghan, M., & O’Gara, F. (1992). Exploitation of gene(s) involved in 2,4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain. Applied Environmental Microbiology, 58, 3873–3878.

    CAS  Google Scholar 

  • Gerlach, M. (1968). Introduction of Ophiobolus graminis into new polders and its decline. Netherlands Journal of Plant Pathology, 74 (Supplement 2), 1–97.

    Article  Google Scholar 

  • Harman, G. E., Howell, C., Viterbo, A, Chet, I., & Matteo, L. (2004). Trichoderma species–Opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43–56.

    Article  PubMed  CAS  Google Scholar 

  • Hass, D., & Defago, G. (2005). Biological control of soil-borne pathongens by fluorescent pseudomonads. Nature Reviews Microbiology, 3, 307–319.

    Article  CAS  Google Scholar 

  • Hering, T. F., Cook, R. J., & Tang, W.-H. (1987). Infection of wheat embryos by Pythium species during seed germination and the influence of seed age and soil matric potential. Phytopathology, 77, 1104–1108.

    Google Scholar 

  • Keel, C., Schnider, U., Maurhofer, M., Voisard, C., & Burger, D. (1992). Suppression of root diseases by Pseudomonas fluorescens CHAO: Importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Molecular Plant-Microbe Interactions, 5, 4–13.

    CAS  Google Scholar 

  • Keel, C., Weller, D. M., Natsch., A., Défago, G., Cook R. J., & Thomashow L. S. (1996). Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Applied and Environmental Microbiology, 62, 552–563.

    PubMed  CAS  Google Scholar 

  • Landa, B. B., Mavrodi, O. V., Raaijmakers, J. M., McSpadden Gardener, B. B., Thomashow, L. S., & Weller, D. M. (2002). Differential ability of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains to colonize the roots of pea plants. Applied and Environmental Microbiology, 68, 3226–3237.

    Article  PubMed  CAS  Google Scholar 

  • Landa, B. B., Mavrodi, O., Schroeder, K., Allende-Molar, R., & Weller, D. M. (2005). Enrichment and genotypic diversity of phl-D containing fluorescent Pseudomonas spp. in two soils after a century of wheat and flax monoculture. FEMS Microbiology Ecology, 55, 351–356.

    Article  CAS  Google Scholar 

  • Mathre, D. M., Cook, R. J., & Callan, N. W. (1999). From discovery to use: Traversing the world of commercializing biocontrol agents for plant disease control. Plant Disease, 83, 972–983.

    Article  Google Scholar 

  • Mavrodi, D. V., Ksenzenko, V. N., Bonsall, R. F., Cook, R. J., Boronin, A. M., & Thomashow, L. S. (1998). A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2–79. Journal Bacteriology, 180, 2541–2548.

    CAS  Google Scholar 

  • Mavrodi, O. V., McSpadden Gardener, B. B., Mavrodi, D. V., Bonsall, R. F., Weller, D. M., & Thomashow, L. S. (2001). Genetic diversity of phlD from 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas species. Phytopathology, 91, 35–43.

    Article  CAS  PubMed  Google Scholar 

  • Mazzola, M. (1998). Elucidation of the microbial complex having a causal role in the development of apple replant disease in Washington. Phytopathology, 88, 930–938.

    Article  PubMed  CAS  Google Scholar 

  • Mazzola, M. (1999). Transformation of soil microbial community structure and Rhizoctonia-suppressive potential in response to apple roots. Phytopathology, 89, 920–927.

    Article  PubMed  CAS  Google Scholar 

  • Mazzola, M., & Gu, Y.-H. (2000). Phytomanagement of microbial community structure to enhance growth of apples in replant soils. Acta Horticulture, 532, 73–78.

    Google Scholar 

  • McSpadden Gardener, B. B., Mavrodi, D. V., Thomashow, L. S., & Weller, D. M. (2001). A rapid PCR-based assay characterizing rhizosphere populations of 2,4-DAPG-producing bacteria. Phytopathology, 91, 44–54.

    Article  CAS  PubMed  Google Scholar 

  • McSpadden Gardener, B. B., Schroeder, K. L., Kalloger, S. E., Raaijmakers, J. M., Thomashow, L. S., & Weller, D. M. (2000). Genotypic and phenotypic diversity of phl-D-containing Pseudomonas isolated from the rhizosphere of wheat. Applied Environmental Microbiology, 66, 1939–1946.

    Article  CAS  Google Scholar 

  • McSpadden Gardner, B. B., Gutierrez, L. J., Raghavendra, J., Edema, R., & Lutton, E. (2005). Distribution and biocontrol potential of phlD + psuedomonads in corn and soybean fields. Phytopathology, 95, 15–724.

    Article  CAS  Google Scholar 

  • Paulitz, T., Smiley, R. W., & Cook, R. J. (2002). New insights into the make-up and management of soilborne cereal pathogens under direct seeding in the Pacific Northwest. Canadian Journal of Plant Pathology, 24, 416–428.

    Article  Google Scholar 

  • Picard, C., Di Cello, F., Ventura, M., Fani, R., & Guckert, A. (2000). Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Applied Environmental Microbiology, 66, 948–955.

    Article  CAS  Google Scholar 

  • Raaijmakers, J. M., Bonsall, R. F., & Weller, D. M. (1999). Effect of population density of Pseudomonas fluorescens on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology, 89, 470–475.

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers, J. M., & Weller, D. M. (2001). Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp: Characterization of superior root-colonizing P. fluorescens strain Q8r1-96. Applied Environmental Microbiology, 67, 2545–2554.

    Article  CAS  Google Scholar 

  • Ramsey, N. E. (2001). Occurrence of take-all on wheat in Pacific Northwest cropping systems. Pullman, WA: Dissertation, Washington State University.

    Google Scholar 

  • Rassmusen, P. E., & Rhode, C. R. (1989). Longer-term tillage and nitrogen fertilization effects on organic nitrogen and carbon in a semiarid soil. Soil Science Society of America Journal, 53, 119–122.

    Article  Google Scholar 

  • Roget, D. K., Neate, S. M., & Rovira, A. D. (1996). Effect of sowing point design and tillage practice on the incidence of rhizoctonia root rot, take-all and cereal cyst nematode in wheat and barley. Australian Journal Experimental Agriculture, 36, 683–693.

    Article  Google Scholar 

  • Roget, D. K., Venn, N. R., & Rovira, A. D. (1987). Reduction of rhizoctonia root rot of direct-drilled wheat by short-term chemical fallow. Australian Journal of Experimental Agriculture, 27, 425–430.

    Article  Google Scholar 

  • Rothrock, C. S., & Cunfer, B. M. (1986). Absence of take-all decline in double-cropped fields. Soil Biology and Biochemistry, 18,113–114.

    Article  Google Scholar 

  • Sands, D. C., & Rovira, A. D. (1970). Isolation of fluorescent psuedomonads with a selective medium. Applied Microbiology, 20, 513–514.

    PubMed  CAS  Google Scholar 

  • Schippers, B., Bakker, A. W., & Bakker, P. A. H. M. (1987). Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annual Review of Phytopathology, 25, 258–339.

    Article  Google Scholar 

  • Schoeny, A., & Lucas, P. (1999). Modeling of take-all epidemics to evaluate the efficacy of a new seed-treatment fungicide on wheat. Phytopathology, 89, 954–961.

    Article  PubMed  CAS  Google Scholar 

  • Shipton, P. J., Cook, R. J., & Sitton, J. W. (1973). Occurrence and transfer of a biological factor in soil that suppresses take-all in wheat in eastern Washington. Phytopathology, 63, 511–517.

    Article  CAS  Google Scholar 

  • Smiley, R. W., Merrifield, K., Patterson, L. M., Gourlie, J. A., & Easley, S. A. (2004). Nematodes in dryland field crops in the semiarid Pacific Northwest USA. Journal of Nematology, 36, 54–68.

    PubMed  Google Scholar 

  • Smiley, R. W., Ogg, Jr., A. G., & Cook, R. J. (1992). Influence of glyphosate on severity of Rhizoctonia root rot and growth and yield of barley. Plant Disease, 76, 937–942.

    Article  CAS  Google Scholar 

  • Smiley, R. W., Patterson, L. M., & Sheldon, C. W. (1996). Fungicide seed treatments influence emergence of winter wheat in cold soil. Journal of Production Agriculture, 9, 559–563.

    Google Scholar 

  • Souza, J. T., Weller, D. M., & Raaijmakers, J. M. (2003). Frequency, diversity, and activity of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in Dutch take-all decline soils. Phytopathology, 93, 54–63.

    Article  PubMed  Google Scholar 

  • Stutz, E. W., Defago, G., & Kern, H. (1986). Naturally occurring fluorescent pseudomonads involved in suppression of black root rot of tobacco. Phytopathology, 76, 181–185.

    Article  Google Scholar 

  • Weller, D. M. (1988). Biological control of soilborne plant pathogens in the rhizosphere by bacteria. Annual Review of Phytopathology, 26, 379–407.

    Article  Google Scholar 

  • Weller, D. M., Landa, B. B., Mavrodi, O. V., Schroeder, K. L., De La Fuente, L., Blouin Bankhead, S., et al. (2007). Role of 2,4–diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biology, 9, 4–20.

    Article  PubMed  CAS  Google Scholar 

  • Weller, D. M., Raaijmakers, J. M., McSpadden Gardener, B. B., & Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40, 309–348.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. James Cook.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, R.J. Management of resident plant growth-promoting rhizobacteria with the cropping system: a review of experience in the US Pacific Northwest. Eur J Plant Pathol 119, 255–264 (2007). https://doi.org/10.1007/s10658-007-9201-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-007-9201-1

Keywords

Navigation