Skip to main content
Log in

Fusarium head blight evaluation in wheat transgenic plants expressing the maize b-32 antifungal gene

  • Full Research Paper
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The maize gene b-32, normally expressed in the maize (Zea mays) endosperm, encodes for a RIP (Ribosome Inactivating Protein) characterised by antifungal activity. Transgenic wheat plants were obtained via biolistic transformation, in which the b-32 gene is driven by the 35SCaMV promoter in association with the bar gene as a selectable marker. Plants were brought to homozygosity through genetic analysis of progeny and pathogenicity tests were performed on the fourth generation. Six homozygous b-32 wheat lines were characterised. All plants had a normal phenotype, not distinguishable from the control cv. Veery except for slightly smaller size, flowered and set seeds. Western blot analyses confirmed b-32 expression during the plant life cycle in the various tissues. Each line differed in the b-32 content in leaf protein extracts and the transgenic protein expression level was maintained at least up to 10 days after anthesis. Pathogenicity tests for Fusarium head blight (FHB) were performed on the b-32 transgenic wheat lines in comparison to the parental cv. Veery. Resistance to FHB was evaluated by the single floret injection inoculation method on immature spikes with spores of Fusarium culmorum. In all the transgenic lines, a similar reduction in FHB symptoms, not dependent on the level of b-32 protein, has been observed (20% and 30% relative to the control, respectively 7 and 14 days after inoculation). Percentage of tombstone kernels at maturity was also recorded; in all transgenic lines disease control for this parameter was around 25%. The data obtained indicate that maize b-32 was effective as in vivo antifungal protein reducing FHB symptoms in wheat lines expressing the maize RIP protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Argyris, J., TeKrony, D., Hershman, D., Van Sanford, D., Hall, M., Kennedy, B., Rucker, M., & Edge, C. (2005). Fusarium head blight infection following point inoculation in the greenhouse compared with movement of Fusarium graminearum in seed and floral components. Crop Science, 45, 626–634.

    Article  Google Scholar 

  • Bai, G. H., & Shaner, G. (1994). Scab of wheat: Prospects of control. Plant Disease 78, 760–766.

    Google Scholar 

  • Bai, G., Kolb, F. L., Shaner, G., & Domier, L. L. (1999). Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat. Phytopathology, 89, 343–348.

    Article  CAS  PubMed  Google Scholar 

  • Bieri, S., Potrykus, I., & Fütterer, J. (2000). Expression of active barley seed ribosome-inactivating protein in transgenic wheat. Theoretical and Applied Genetics, 100, 755–763.

    Article  CAS  Google Scholar 

  • Bliffeld, M., Mundy, J., Potrykus, I., & Fütterer, J. (1999). Genetic engineering of wheat for increased resistance to powdery mildew disease. Theoretical and Applied Genetics, 98, 1079–1086.

    Article  CAS  Google Scholar 

  • Bottalico, A. (1998). Fusarium diseases of cereals: Species complex and related mycotoxin profiles, In Europe. Journal of Plant Pathology, 80(2), 85–103.

    CAS  Google Scholar 

  • Cary, J., Rajasekaran, K., Jaynes, J., & Cleveland, T. (2000). Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of a fungal growth in vitro and in planta. Plant Science, 154, 171–181.

    Article  PubMed  CAS  Google Scholar 

  • Chen, W. P., Chen, P. D., Liu, D. J., Kynast, R., Friebe, B., Velazhahan, R., Muthukrishnan, S., & Gill, B. S. (1999). Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene. Theoretical and Applied Genetics, 99, 755–760.

    Article  CAS  Google Scholar 

  • Chen, L. -F., Bai, G. H, & Desjardins, A. E. (2000). Recent advances in Wheat Head Scab Research in China. Http://www.nal.usda.gov/pgdic/WHS/whsindex.htlm 2000.

  • Coca, M., Bortolotti, C., Rufat, M., Penas, G., Eritja, R., Tharreau, D., Martinez del Pozo, A., Messeguer, J., & San Segundo, B. (2004). Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteous show enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant Molecular Biology, 54, 245–259.

    Article  PubMed  CAS  Google Scholar 

  • Coca, M., Penas, G., Gomez, J., Campo, S., Bortolotti, C., Messeguer, J., & San Segundo, B. (2006). Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a Cecropin A gene in transgenic rice. Planta, 223, 392–406.

    Article  PubMed  CAS  Google Scholar 

  • Dahleen, L. S., Okubara, P. A., & Blechl, A. E. (2001). Transgenic approaches to combat Fusarium head blight in wheat and barley. Crop Science, 41, 628–637.

    Article  Google Scholar 

  • Dardis, J. V., & Walsh, E. J. (2002). Control of Fusarium head blight in wheat under Irish growing conditions: current situation and future prospects. Biology and Environment: proceedings of the Royal Irish Academy, Vol.102B, No.2: 93–103.

  • Di, R., & Tumer, N. E. (2005). Expression of a truncated form of Ribosomal Protein L3 confers resistance to Pokeweed Antiviral Protein and the Fusarium mycotoxin Deoxynivalenol. Molecular Plant-Microbe Interaction, 8, 762–770.

    Article  CAS  Google Scholar 

  • Dowd, P. F., Mehta, A. D., & Boston, R. S. (1998). Relative toxicity of the maize endosperm ribosome-inactivating protein to insects. Journal of Agricultural Food Chemistry, 46, 3775–3779.

    Article  CAS  Google Scholar 

  • Hampl, H., Schulze, H., & Nierhaus, K. H. (1981). Ribosomal components from Escherichi coli 50S subunits involved in the reconstitution of peptidyltransferase activity. Journal of Biological Chemistry, 256, 2284–2288.

    PubMed  CAS  Google Scholar 

  • Hartley, M. R., Chaddock, J. A., & Bonness, M. S. (1996). The structure and function of ribosome-inactivating proteins. Trends in Plant Science, 1, 254–260.

    Article  Google Scholar 

  • Hey, T. D., Hartley, M., & Walsh, T. A. (1995). Maize ribosome inactivating protein (b-32). Plant Physiology, 107, 1323–1332.

    Article  PubMed  CAS  Google Scholar 

  • Hudak, K. A., Dinman, J. D., & Tumer, N. E. (1999). Pokeweed antiviral protein accesses ribosomes by binding to L3. Journal of Biological Chemistry, 274, 3859–3864.

    Article  PubMed  CAS  Google Scholar 

  • Jach, G., Goernhardt, B., Mundy, J., Logemann, J., Pinsdorf, E., Leah, R., Schell, J., & Maas, C. (1995). Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant Journal, 8, 97–109.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D. A., Thomas, C. M., Hammond-Kosack, K. E., Balint-Kurti, P. J., & Jones, J. D. G. (1994). Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science, 266, 789–793.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. K., Duan, X., Wu, R., Seok, S. J., Boston, R. S., Jang, I. C., Eun, M. Y., & Nahm, B. H. (1999). Molecular and genetic analysis of transgenic rice plants expressing the maize ribosome-inactivating protein b-32 gene and the herbicide resistance bar gene. Molecular Breeding, 5, 85–94.

    Article  CAS  Google Scholar 

  • Khush, G. S., Bacalangco, E., & Ogawa, T. (1990). A new gene for resistance to bacterial blight from Oryza longistaminata. Rice Genetics Newsletter, 12, 9–15.

    Google Scholar 

  • Krishnamurthy, K., Balconi, C., Sherwood, J. E., & Giroux, M. (2001). Increased tolerance to fungal diseases of rice plants transformed with puroindoline genes. Molecular Plant-Microbe Interactions, 14, 1255–1260.

    Article  PubMed  CAS  Google Scholar 

  • Lorito, M., Woo, S. L., Garcia-Fernandez, I., Colucci, G., Barman, G. E., Pintor-Toro, J. A., Filippine, E., Mucciflora, S., Lawrence, C. B., Zoina, A., Tuzun, S., & Scala, F. (1998). Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proceedings National Academy Sciences USA 95: 7860–7865.

    Article  CAS  Google Scholar 

  • Lupotto, E., Reali, A., Conti, E., Redaelli, R., Baldoni, E., Carrara, N., Vaccino, P., Cattaneo, M., Forlani, F., Jarosch, B., & Schaffrath, U. (2003). Introduction, expression and antifungal activity of the maize RIP protein b32in wheat (Triticum aestivum L.) In: EUCARPIA-Cereal Section Meeting-From Biodiversity to Genomics: “Breeding Strategies for Small Grain Cereals in the Third Millenium” (pp. 434–436) Marchi s.n.c. Fiorenzuola D’Arda (Italy).

  • Maddaloni, M., Barbieri, L., Lohmer, S., Motto, M., Salamini, F., & Thompson, R. (1991). Characterization of an endosperm-specific developmentally regulated protein synthesis inhibitor from maize seeds. Journal of Genetics and Breeding, 45, 377–380.

    CAS  Google Scholar 

  • Maddaloni, M., Forlani, F., Balmas, V., Donini, G., Stasse, L., Corazza, L., & Motto, M. (1997). Tolerance to the fungal pathogen Rhizoctonia solani AG4 of transgenic tabacco expressing the maize ribosome-inactivating protein b-32. Transgenic Research, 6, 393–402.

    Article  CAS  Google Scholar 

  • McKeehen, J. D., Bush, R. H., & Fulcher, R. G. (1999). Evaluation of wheat (Triticum aestivum L.) phenolic acids during grain development and their contribution to Fusarium resistance. Journal of Agricultural Food Chemistry, 47, 1476–1482.

    Article  CAS  Google Scholar 

  • McMullen, M. P., & Stack, R. W.(1994). Head blight (scab) of small grains. North Dakota State University Service. PP804.

  • McMullen, M., Jones, R., & Gallenberg, D. (1997). Scab of wheat and barley: A re-emerging disease of devastating impact. Plant Disease, 81, 1340–1348.

    Article  Google Scholar 

  • Meidaner, T. (1997). Breeding wheat and rye for resistance to Fusarium diseases. Plant Breeding, 116, 201–220.

    Article  Google Scholar 

  • Mesterhazy, A. (1995). Types and components of resistance to Fusarium Head Blight of wheat. Plant Breeding, 114, 377–386.

    Article  Google Scholar 

  • Miller, J. D., & Ewen, M. A. (1997). Toxic effects of deoxynivalenol on ribosomes and tissues of the spring wheat cultivars Frontana and Casavant. Natural Toxins, 5, 234–237.

    Article  PubMed  CAS  Google Scholar 

  • Motto, M., & Lupotto, E. (2004). Genetics of the maize Ribosome Inactivating Protein. Mini-Reviews in Medicinal Chemistry, 4(5), 461–476.

    Google Scholar 

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  • Nielsen, K., & Boston, R. (2001). Ribosome-Inactivating Proteins: A plant perspective. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 785–816.

    Article  PubMed  CAS  Google Scholar 

  • Oldach, K. H., Becker, D., & Loerz, H. (2001). Heterologous expression of genes mediating enhanced fungal resistance in transgenic wheat. Molecular Plant-Microbe Interactions, 7, 832–838.

    Article  Google Scholar 

  • Parry, D. W., Pettitt, T. R., Jenkinson, P., & Lees, A. K. (1994). The cereal Fusarium complex. In P. Blakeman ,& B. Williamson (Eds.), Ecology of plant pathogens (pp. 301–20). Wallingford, UK: CAB International.

    Google Scholar 

  • Parry, D. W., Jenkinson, P., & McLeod, L. (1995). Fusarium ear blight (scab) in small grain cereals-A review. Plant Pathology, 44, 207–238.

    Article  Google Scholar 

  • Rudd, J. C., Horsley, R. D., McKendry, A. L., & Elias, E. M. (2001). Host plant resistance genes for Fusarium head blight: Sources, mechanisms, and utility in conventional breeding systems. Crop Science, 41, 620–627.

    Article  Google Scholar 

  • Schroeder, H. W., & Christensen, J. J. (1963). Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology, 53, 831–838.

    Google Scholar 

  • Snijders, C. H. (1990). Genetic variation for resistance to Fusarium head blight in bread wheat. Euphytica, 50, 171–179.

    Article  Google Scholar 

  • Song, W. Y., Wang, G. L., Chen, L. L., Kim, H. S., Pi, L. Y., Holsten, T., Gardner, J., Wang, B., Zhai, W. X., Zhu, L. H., Fauquet, C., & Ronald, P. (1995). A receptor kinase-like protein encoded by the rice disease resistance gene Xa21. Science, 270, 1804–1806.

    Article  PubMed  CAS  Google Scholar 

  • Stack, R. W. (1989). A comparison of the inoculum potential of ascospores and conidia of Gibberella zeae. Canadian Journal of Plant Pathology, 11, 137–142.

    Article  Google Scholar 

  • Stack, R. W., & Mc Mullen, M. P. (1998). A visual Scale to Estimate Severity of Fusarium Head Blight in Wheat. Publication #PP1095, North Dakota State University Extension Service.

  • Stack, R. W. (2000). Return of an old problem: Fusarium Head Blight of small grains. Plant Health Progress-Plant Health Reviews- Accession DOI:10.1094/PHP-2000-0622-01-RV.

  • Tossi, A., Sandri, L., & Giangaspero, A. (2000). Amphipathic, a-helical antimicrobial peptides. Biopolymer, 55, 4–30.

    Article  CAS  Google Scholar 

  • Toth, B., Mesterházy, Á., Horváth, Z., Bartók, T., Varga, M., & Varga, J. (2005). Genetic variability of central European isolates of the Fusarium graminearum species complex. European Journal of Plant Pathology, 113, 35–45.

    Article  CAS  Google Scholar 

  • Triulzi T, Lupotto, E., & Forlani, F. (2004). Recombinant expression of a maize Ribosome-Inactivating-Protein (B32.66) in Saccharomyces cerevisiae and Escherichia coli. Proteine 2004-XVII Meeting of the Protein Workgroup of the Italian Society of Biochemistry and Molecular Biology-Viterbo(I)20–22.05.2004 The Italian Journal of Biochemistry-Vol.53 suppl.n.1March 2004-p.61.

  • Van Sanford, D. V., Anderson, J., Campbell, K., Costa, J., Cregan, P., Griffey, C., Hayes, P., & Ward, R. (2001). Discovery and deployment of molecular markers linked to Fusarium Head Blight resistance: An integrated system for wheat and barley. Crop Science, 41, 638–644.

    Article  Google Scholar 

  • Wang, Y. Z., Yang, X. N., & Xiao, Q. P. (1982). The improvement of identification techniques for scab resistance of wheat and the development of resistance sources. Scientia Agricultura Sinica, 5, 67–77.

    Google Scholar 

  • Wang, Y. Z., & Miller, J. D. (1988). Screening techniques and sources of resistance to Fusarium head blight. In A. R. Klatt (Ed.), Wheat Production Constraints in Tropical Environments (pp. 239–250). Mexico, DF: CIMMYT.

    Google Scholar 

  • Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415, 389–395.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Part of the work recognizes the financial support of the framework by Piano Nazionale per le Biotecnologie (Ministero delle Politiche Agricole, Roma) coordinated project n.406.

Thanks are due to Dr. N. Berardo for the support in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlotta Balconi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balconi, C., Lanzanova, C., Conti, E. et al. Fusarium head blight evaluation in wheat transgenic plants expressing the maize b-32 antifungal gene. Eur J Plant Pathol 117, 129–140 (2007). https://doi.org/10.1007/s10658-006-9079-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-006-9079-3

Keywords

Navigation