Skip to main content
Log in

Predation enforcement options: an evaluation in a Cournot framework

  • Published:
European Journal of Law and Economics Aims and scope Submit manuscript

Abstract

The paper characterises the building blocks of a framework to enforce anti-predation rules and subsequently evaluates selected enforcement options in a Cournot-type duopoly predation model. Differentiating between a no rule approach, an ex ante approach and two ex post approaches, it is shown that an ex post approach typically maximises overall welfare. However, an ex ante approach can be the preferred option in cases where the entrant has a large cost advantage over the incumbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Napp Pharmaceutical Holdings Ltd. and Subsidiaries v. Director General of Fair Trading, CA98/2/2001 (2001).

  2. Beschluss in dem Verwaltungsverfahren gegen Deutsche Lufthansa AG, Köln, B 9-144/01 (2002).

  3. COMP/38.233 - Wanadoo Interactive (2003).

  4. Predation by Aberdeen Journal Ltd., CA98/5/2001 (2002).

  5. The graph in Fig. 1 shows that the realised consumer surplus depends on the exact enforcement timing of the antitrust authority. In order to maximise consumer surplus, it would be optimal to hold back the intervention to the point at which the entrant has to leave the market.

  6. This argument is based on the general work of Becker (1968: 169ff.), who shows that even if the enforcement costs are zero, it is not economically justified to deter all violations, as some offences are efficient in the sense that the gain to the offender exceeds the harm to the victim.

  7. In fact, the complete rule says that the “optimal penalty should equal the net harm to persons other than the offender, adjusted upward if the probability of apprehension and conviction is less than one”. This second part of the rule becomes relevant in an assessment of optimal enforcement in an imperfect world; see Lande (2004).

  8. An alternative definition of harm could be the cost that the violation has imposed on society. That would ignore the distributive effects of a predation strategy (namely, the lower consumer surplus due to higher monopoly profits) and would only focus on the net welfare losses. It can be shown (e.g., with the model and market specification defined below) that such an alternative definition of harm typically cannot reach a deterrence effect, as the gains of the violation are typically larger than the optimal harm-based fine. Only if the entrant has a large efficiency advantage would such a definition of harm-based fine lead to a deterrence effect.

  9. In the simple set-up provided by Fig. 1, the consumers are better off with an ex ante approach than with a no rule approach as long as the post-predation period is longer than the predation period.

  10. Although the basic model was developed by Normann (in an unpublished paper), the set-up of the basic model largely follows Phlips (1995: 241ff.). Phlips applies Normann’s model.

  11. In fact, it can be shown that the consumer surplus is equal to the surplus realised under perfect competition.

  12. For FC=0, the incumbent has to match the marginal costs of the entrant to reach its exit. Overall, the table in combination with the welfare components analysis above reflects the well-known theoretical result that low prices are necessarily good for consumers as they increase consumer welfare, but are not necessarily good for overall welfare. In the model and market specification used above, the incumbent has to accept prices below its own marginal costs on three occasions to reach the exit of the entrant: FC=0/moderate, FC=0/large and FC=10/large. While consumer welfare always increases in the predation situation, compared to the duopoly situation, total welfare is slightly higher in the FC=0/moderate scenario and clearly smaller in the remaining two worlds with a large cost advantage.

  13. However, it is possible to show that the optimal harm-based fine turns negative for large α and small β. This basically reflects the fact that the incumbent invests a relatively large amount during the predation period α and does not have the chance to realise a positive return on investment in the short post-predation period β.

  14. The monopoly turnover is 2764.8.

References

  • Areeda, P., & Turner, D. (1975). Predatory pricing and related practices under section 2 of the Sherman Act. Harvard Law Review, 88, 697–733.

    Article  Google Scholar 

  • Baumol, W. (1979). Quasi-permanence of price reductions: A policy for prevention of predatory pricing. Yale Law Journal, 89, 1–26.

    Article  Google Scholar 

  • Baumol, W. (1996). Predation and the logic of the average variable cost test. Journal of Law and Economics, 39, 49–72.

    Article  Google Scholar 

  • Becker, G. (1968). Crime and punishment: An economic approach. Journal of Political Economy, 76, 169–217.

    Article  Google Scholar 

  • Bolton, P., Brodley, J., & Riordan, M. (2000). Predatory pricing: Strategic theory and legal policy. Georgetown Law Review, 88, 2239–2330.

    Google Scholar 

  • Brodley, J., & Hay, G. (1981). Predatory pricing. Competing economic theories and the evolution of legal standards. Cornell Law Review, 66, 738–803.

    Google Scholar 

  • Cabral, L., & Riordan, M. (1997). The learning curve, predation, antitrust, and welfare. Journal of Industrial Economics, 45, 55–169.

    Google Scholar 

  • Farrell, J., & Katz, M. (2001). Competition or predation? Schumpeterian rivalry in network markets. Working paper, University of California at Berkeley.

  • Hüschelrath, K., & Weigand, J. (2010). A framework to enforce anti-predation rules. World Competition Law and Economics Review, 33, 209–240.

    Google Scholar 

  • Joskow, P., & Klevorick, A. (1979). A framework for analyzing predatory pricing policy. Yale Law Journal, 89, 213–270.

    Article  Google Scholar 

  • Kate, A., & Niels, G. (2004). Below cost pricing in the presence of network externalities. In Swedish Competition Authority (Ed.), The pros and cons of low prices (pp. 97–127). Göteborg.

  • Lande, R. (2004). Why antitrust damage levels should be raised. Loyola Consumer Law Review, 16, 329–345.

    Google Scholar 

  • Landes, W. (1983). Optimal sanctions for antitrust violations. University of Chicago Law Review, 50, 652–678.

    Article  Google Scholar 

  • Martin, S. (1994). Industrial economics. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Mastromanolis, E. (1998). Predatory pricing strategies in the European Union: A case for legal reform. European Competition Law Review, 19, 211–224.

    Google Scholar 

  • Normann, H.-T. (1994). Stackelberg warfare as an equilibrium choice in a game with reputation effects. EUI working paper ECO no. 94/43, Florence.

  • OECD. (2007). Remedies and sanctions in abuse of dominance cases. Paris.

  • Oster, C., & Strong, J. (2001). Predatory practices in the U.S. Airline Industry. Working paper, Indiana University, Bloomington.

  • Phlips, L. (1995). Competition policy: A game-theoretic perspective. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Williamson, O. (1977). Predation: A strategic and welfare analysis. Yale Law Journal, 87, 284–340.

    Article  Google Scholar 

  • Wils, W. (2002), The optimal enforcement of EC antitrust law. The Hague.

Download references

Acknowledgments

We would like to thank an anonymous referee for valuable comments on an earlier version of the paper. The usual disclaimer applies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Hüschelrath.

Appendix

Appendix

1.1 Proof of inequality (1)

As discussed above, an initial welfare assessment has to compare the welfare situation of a successful predation strategy against the welfare realised if the monopoly situation in the pre-predation period would have continued. Based on the setup shown in Fig. 1, the welfare if predation is successful,

$$ \begin{gathered} {\text{W}}_{{{\text{Predation}}\;{\text{successful}}}} = \left[ {\left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{entry}} } \right)\left( {{\text{CS}}^{\text{Pred}} } \right)} \right] + \left[ {\left( {{\text{t}}^{\text{end}} - {\text{t}}^{\text{exit}} } \right)\left( {{\text{CS}}^{\text{Mono}} } \right)} \right] \hfill \\ + \left[ {\left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{entry}} } \right)\left( {\pi_{\text{E}}^{\text{Pred}} } \right)} \right] + \left[ {\left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{entry}} } \right)\left( {\pi_{\text{I}}^{\text{Pred}} } \right) + \left( {{\text{t}}^{\text{end}} - {\text{t}}^{\text{exit}} } \right)\left( {\pi_{\text{I}}^{\text{Mono}} } \right)} \right], \hfill \\ \end{gathered} $$
(34)

has to be larger than the welfare realised in the case of continuous monopoly,

$$ \begin{aligned} {\text{W}}_{{{\text{Continuous}}\;{\text{monopoly}}}} = & \left[ {\left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{entry}} } \right)\left( {{\text{CS}}^{\text{Mono}} } \right)} \right] + \left[ {\left( {{\text{t}}^{\text{end}} - {\text{t}}^{\text{exit}} } \right)\left( {{\text{CS}}^{\text{Mono}} } \right)} \right] \\ + \left[ {\left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{entry}} } \right)\left( {\pi_{\text{I}}^{\text{Mono}} } \right)} \right] + \left[ {\left( {{\text{t}}^{\text{end}} - {\text{t}}^{\text{exit}} } \right)\left( {\pi_{\text{I}}^{\text{Mono}} } \right)} \right] \\ \end{aligned} $$
(35)

Substituting \( \left( {t^{exit} - t^{enrty} } \right) = \alpha \) and \( \left( {t^{end} - t^{exit} } \right) = \beta \) and simplifying both expressions leads to

$$ {\text{W}}_{{{\text{Continuous}}\;{\text{monopoly}}}} = \alpha \left( {{\text{CS}}^{\text{Mono}} + \pi_{\text{I}}^{\text{Mono}} } \right) $$
(36)
$$ {\text{W}}_{{{\text{Predation}}\;{\text{successful}}}} = \alpha \left( {{\text{CS}}^{\text{Pred}} + \pi_{\text{E}}^{\text{Pred}} + \pi_{\text{I}}^{\text{Pred}} } \right). $$
(37)

Further simplifying and rearranging leads to

$$ {\text{CS}}^{\text{Pred}} - {\text{CS}}^{\text{Mono}} > \pi_{\text{I}}^{\text{Mono}} - \left( {\pi_{\text{E}}^{\text{Pred}} + \pi_{\text{I}}^{\text{Pred}} } \right). $$
(38)

1.2 Proof of inequality (2)

As discussed above, antitrust rules and interventions increase welfare as long as the overall welfare realised with such interventions,

$$ \begin{aligned} {\text{W}}_{\text{Antitrust}} = & \left[ {\left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{entry}} } \right)\left( {{\text{CS}}^{\text{Pred}} } \right) + ({\text{t}}^{\text{end}} - {\text{t}}^{\text{exit}} )({\text{CS}}^{\text{Duo}} )} \right] \\ + \left[ {\left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{entry}} } \right)\left( {\pi_{\text{E}}^{\text{Pred}} } \right) + \left( {{\text{t}}^{\text{end}} - {\text{t}}^{\text{exit}} } \right)\left( {\pi_{\text{E}}^{\text{Duo}} } \right)} \right] \\ + \left[ {\left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{entry}} } \right)\left( {\pi_{\text{I}}^{\text{Pred}} } \right) + \left( {t^{\text{end}} - t^{\text{exit}} } \right)\left( {\pi_{\text{I}}^{\text{Duo}} } \right)} \right], \\ \end{aligned} $$
(39)

is larger than the welfare realised when the incumbent can successfully apply a predation strategy

$$ \begin{aligned} {\text{W}}_{{{\text{No}}\,{\text{Antitrust}}}} = & \left[ {\left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{entry}} } \right)\left( {{\text{CS}}^{\text{Pred}} } \right)} \right] + \left[ {\left( {{\text{t}}^{\text{end}} - {\text{t}}^{\text{exit}} } \right)\left( {{\text{CS}}^{\text{Mono}} } \right)} \right] \\ + \left[ {\left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{entry}} } \right)\left( {\pi_{\text{E}}^{\text{Pred}} } \right)} \right] + \left[ {\left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{entry}} } \right)\left( {\pi_{\text{I}}^{\text{Pred}} } \right) + \left( {{\text{t}}^{\text{end}} - {\text{t}}^{\text{exit}} } \right)\left( {\pi_{\text{I}}^{\text{Mono}} } \right)} \right]. \\ \end{aligned} $$
(40)

Substituting \( \left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{enrty}} } \right) = \alpha \) and \( \left( {{\text{t}}^{\text{end}} - {\text{t}}^{\text{exit}} } \right) = \beta \) and simplifying both expressions leads to

$$ {\text{W}}_{{{\text{No}}\,{\text{Antitrust}}}} = \beta \left( {{\text{CS}}^{\text{Mono}} + \pi_{\text{I}}^{\text{Mono}} } \right) $$
(41)
$$ W_{\text{Antitrust}} = \beta \left( {{\text{CS}}^{\text{Duo}} + \pi_{\text{E}}^{\text{Duo}} + \pi_{\text{I}}^{\text{Duo}} } \right) $$
(42)

Further simplifying and rearranging leads to

$$ {\text{CS}}^{\text{Duo}} - {\text{CS}}^{\text{Mono}} > \pi_{\text{I}}^{\text{Mono}} - \left( {\pi_{\text{E}}^{\text{Duo}} + \pi_{\text{I}}^{\text{Duo}} } \right). $$
(43)

1.3 Proof of equalities (3) and (4)

As discussed above, optimal fines can be calculated on a gain-basis and on a harm-basis. In the following, proofs for both fines are provided.

1.3.1 Optimal gain-based fine

The optimal gain-based fine for an antitrust violation is equal to the additional gain the offender realises due to its misbehaviour. In the setup of Fig. 1, the optimal fine is therefore defined as the difference between the incumbent’s overall profits realised under successful predation

$$ \pi_{\text{I}}^{\text{Pred}} = \left[ {\left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{entry}} } \right)\left( {\pi_{\text{I}}^{\text{Pred}} } \right)} \right] + \left[ {\left( {{\text{t}}^{\text{end}} - {\text{t}}^{\text{exit}} } \right)\left( {\pi_{\text{I}}^{\text{Mono}} } \right)} \right] $$
(44)

and the incumbent’s profit if it accommodates the entrant

$$ \pi_{\text{I}}^{\text{Duo}} = \left[ {\left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{entry}} } \right)\left( {\pi_{\text{I}}^{\text{Duo}} } \right)} \right] + \left[ {\left( {{\text{t}}^{\text{end}} - {\text{t}}^{\text{exit}} } \right)\left( {\pi_{\text{I}}^{\text{Duo}} } \right)} \right]. $$
(45)

Substituting \( \left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{enrty}} } \right) = \alpha \) and \( \left( {{\text{t}}^{\text{end}} - {\text{t}}^{\text{exit}} } \right) = \beta \) and simplifying both expressions leads to

$$ \pi_{\text{I}}^{\text{Pred}} = \beta \pi_{\text{I}}^{\text{Mono}} + \alpha \pi_{\text{I}}^{\text{Pred}} $$
(46)
$$ \pi_{\text{I}}^{\text{Duo}} = \beta \pi_{\text{I}}^{\text{Duo}} + \alpha \pi_{\text{I}}^{\text{Duo}} $$
(47)

Generally, the optimal gain-based fine is \( {\text{F}}_{{{\text{Gain}}\;{\text{based}}}} = \pi_{\text{I}}^{\text{Pred}} - \pi_{\text{I}}^{\text{Duo}} . \) Using the expressions above leads to the following optimal gain-based fine:

$$ {\text{F}}_{{{\text{Gain}}\;{\text{based}}}} = \beta \left( {\pi_{\text{I}}^{\text{Mono}} - \pi_{\text{I}}^{\text{Duo}} } \right) + \alpha \left( {\pi_{\text{I}}^{\text{Pred}} - \pi_{\text{I}}^{\text{Duo}} } \right). $$
(48)

1.3.2 Optimal harm-based fine

As explained in the text, the optimal harm-based fine refers to the ‘net harm to others’ caused by the violation. In the predation period, harm is therefore given by the sum of the difference between the duopoly and the predation consumer surpluses and the difference between the entrant’s duopoly and predation profits

$$ {\text{Harm}}_{\alpha } = \alpha \left[ {\left( {{\text{CS}}^{\text{Duo}} - {\text{CS}}^{\text{Pred}} } \right) + \left( {\pi_{\text{E}}^{\text{Duo}} - \pi_{\text{E}}^{\text{Pred}} } \right)} \right]. $$
(49)

If predation is successful, the net harm to others is given by the difference between the duopoly and the monopoly consumer surpluses and the entrant’s duopoly profits (it would have earned without a successful predation strategy)

$$ {\text{Harm}}_{\beta } = \beta \left[ {\left( {{\text{CS}}^{\text{Duo}} - {\text{CS}}^{\text{Mono}} } \right) + \pi_{\text{E}}^{\text{Duo}} } \right] $$
(50)

The optimal harm-based fine is therefore given by

$$ {\text{F}}_{{{\text{Harm}}\;{\text{based}}}} = \alpha \left[ {\left( {{\text{CS}}^{\text{Duo}} - {\text{CS}}^{\text{Pred}} } \right) + \left( {\pi_{\text{E}}^{\text{Duo}} - \pi_{\text{E}}^{\text{Pred}} } \right)} \right] + \beta \left[ {\left( {{\text{CS}}^{\text{Duo}} - {\text{CS}}^{\text{Mono}} } \right) + \pi_{\text{E}}^{\text{Duo}} } \right] $$
(51)

1.4 Proof of equality (5) and inequality (6)

The choice between an ex post I approach and an ex post II approach with an optimal fine can be expressed as follows. In an ex post I approach the overall welfare is given by

$$ \begin{aligned} {\text{W}}_{{{\text{Ex}}\,{\text{post}}\,{\text{I}}}} = & \left[ {\left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{entry}} } \right)\left( {{\text{CS}}^{\text{Pred}} } \right) + ({\text{t}}^{\text{end}} - {\text{t}}^{\text{exit}} )({\text{CS}}^{\text{Duo}} )} \right] \\ + \left[ {\left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{entry}} } \right)\left( {\pi_{\text{E}}^{\text{Pred}} } \right) + \left( {t^{\text{end}} - t^{\text{exit}} } \right)\left( {\pi_{\text{E}}^{\text{Duo}} } \right)} \right] \\ + \left[ {\left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{entry}} } \right)\left( {\pi_{\text{I}}^{\text{Pred}} } \right) + \left( {{\text{t}}^{\text{end}} - {\text{t}}^{\text{exit}} } \right)\left( {\pi_{\text{I}}^{\text{Duo}} } \right)} \right]. \\ \end{aligned} $$
(52)

As shown above, the optimal fine is 0 in an ex post I approach, as the predator did not cause any harm. The overall welfare in an ex post II approach with an optimal fine is given by

$$ \begin{aligned} {\text{W}}_{{{\text{Ex}}\,{\text{post}}\,{\text{II}}}} = & \left[ {\left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{entry}} } \right)\left( {{\text{CS}}^{\text{Pred}} } \right)} \right] + \left[ {\left( {{\text{t}}^{\text{end}} - {\text{t}}^{\text{exit}} } \right)\left( {{\text{CS}}^{\text{Mono}} } \right)} \right] \\ + \left[ {\left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{entry}} } \right)\left( {\pi_{\text{E}}^{\text{Pred}} } \right)} \right] + \left[ {\left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{entry}} } \right)\left( {\pi_{\text{I}}^{\text{Pred}} } \right) + \left( {t^{\text{end}} - t^{\text{exit}} } \right)\left( {\pi_{\text{I}}^{\text{Mono}} } \right)} \right] \\ + \left\{ {\left. {\alpha \left[ {\left( {{\text{CS}}^{\text{Duo}} - {\text{CS}}^{\text{Pred}} } \right) + \left( {\pi_{\text{E}}^{\text{Duo}} - \pi_{\text{E}}^{\text{Pred}} } \right)} \right]} \right\}} \right. + \varepsilon \left[ {\left( {{\text{CS}}^{\text{Duo}} - {\text{CS}}^{\text{Mono}} } \right) + \pi_{\text{E}}^{\text{Duo}} } \right]. \\ \end{aligned} $$
(53)

The welfare realised is just the welfare in an approach where the antitrust authority does not intervene and the welfare of collecting the optimal fine after ε periods. As the predator successfully reached the exit of the entrant, he can still charge monopoly prices for the remaining β-ε periods.

Substituting \( \left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{entry}} } \right) = \alpha \) and \( \left( {{\text{t}}^{\text{end}} - {\text{t}}^{\text{exit}} } \right) = \beta \) and simplifying both expressions leads to

$$ {\text{W}}_{{{\text{Ex}}\,{\text{post}}\,{\text{I}}}} = \beta \left( {{\text{CS}}^{\text{Duo}} + \pi_{\text{E}}^{\text{Duo}} + \pi_{\text{I}}^{\text{Duo}} } \right) $$
(54)
$$ \begin{aligned} {\text{W}}_{{{\text{Ex}}\,{\text{post}}\,{\text{II}}}} = & \beta \left( {{\text{CS}}^{\text{Mono}} + \pi_{\text{I}}^{\text{Mono}} } \right) \\ + \left\{ {\left. {\alpha \left[ {\left( {{\text{CS}}^{\text{Duo}} - {\text{CS}}^{\text{Pred}} } \right) + \left( {\pi_{\text{E}}^{\text{Duo}} - \pi_{\text{E}}^{\text{Pred}} } \right)} \right]} \right\} + \left\{ {\varepsilon \left[ {\left( {{\text{CS}}^{\text{Duo}} - {\text{CS}}^{\text{Mono}} } \right) + \pi_{\text{E}}^{\text{Duo}} } \right]} \right\}.} \right. \\ \end{aligned} $$
(55)

The welfare differential can be calculated by subtracting \( {\text{W}}_{{{\text{Ex}}\,{\text{post}}\,{\text{II}}}} \) from \( {\text{W}}_{{{\text{Ex}}\,{\text{post}}\,{\text{I}}}} \). The value of the positive differential shows how much the antitrust authority should invest at the maximum in the quicker but more expensive ex post I approach to increase overall welfare compared to an ex post II approach.

1.5 Proof of inequality (8)

As discussed above, an alternative to ex post antitrust rules is ex ante antitrust rules. If such rules work frictionless they turn predation into an unprofitable strategy before it is actually played by the incumbent. Consequently, the entrant will be accommodated under such a regime.

Ex ante rules are superior to ex post rules if the welfare realised under the former regime,

$$ \begin{aligned} {\text{W}}_{{{\text{Ex - ante}}\;{\text{rule}}}} = & \left[ {\left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{entry}} } \right)\left( {{\text{CS}}^{\text{Duo}} } \right) + \left( {{\text{t}}^{\text{end}} - {\text{t}}^{\text{exit}} } \right)\left( {{\text{CS}}^{\text{Duo}} } \right)} \right] \\ + \left[ {\left( {{\text{t}}^{\text{exit}} - t^{\text{entry}} } \right)\left( {\pi_{\text{E}}^{\text{Duo}} } \right) + \left( {{\text{t}}^{\text{end}} - {\text{t}}^{\text{exit}} } \right)\left( {\pi_{\text{E}}^{\text{Duo}} } \right)} \right] \\ + \left[ {\left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{entry}} } \right)\left( {\pi_{\text{I}}^{\text{Duo}} } \right) + \left( {{\text{t}}^{\text{end}} - {\text{t}}^{\text{exit}} } \right)\left( {\pi_{\text{I}}^{\text{Duo}} } \right)} \right] \\ \end{aligned} $$
(56)

is larger than the welfare realised under an ex post regime,

$$ \begin{aligned} {\text{W}}_{{{\text{Ex - post}}\;{\text{rule}}}} = & \left[ {\left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{entry}} } \right)\left( {{\text{CS}}^{\text{Pred}} } \right) + ({\text{t}}^{\text{end}} - {\text{t}}^{\text{exit}} )({\text{CS}}^{\text{Duo}} )} \right] \\ + \left[ {\left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{entry}} } \right)\left( {\pi_{\text{E}}^{\text{Pred}} } \right) + \left( {{\text{t}}^{\text{end}} - t^{\text{exit}} } \right)\left( {\pi_{\text{E}}^{\text{Duo}} } \right)} \right] \\ + \left[ {\left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{entry}} } \right)\left( {\pi_{\text{I}}^{\text{Pred}} } \right) + \left( {{\text{t}}^{\text{end}} - {\text{t}}^{\text{exit}} } \right)\left( {\pi_{\text{I}}^{\text{Duo}} } \right)} \right] \\ \end{aligned} $$
(57)

Substituting \( \left( {{\text{t}}^{\text{exit}} - {\text{t}}^{\text{enrty}} } \right) = \alpha \) and \( \left( {{\text{t}}^{\text{end}} - {\text{t}}^{\text{exit}} } \right) = \beta \) and simplifying both expressions leads to

$$ {\text{W}}_{{{\text{Ex - ante}}\,{\text{rule}}}} = \alpha \left( {{\text{CS}}^{\text{Duo}} + \pi_{\text{E}}^{\text{Duo}} + \pi_{\text{I}}^{\text{Duo}} } \right), $$
(58)
$$ {\text{W}}_{{{\text{Ex - post}}\,{\text{rule}}}} = \alpha \left( {{\text{CS}}^{\text{Pred}} + \pi_{\text{E}}^{\text{Pred}} + \pi_{\text{I}}^{\text{Pred}} } \right) $$
(59)

Further simplifying and rearranging leads to

$$ {\text{CS}}^{\text{Duo}} - {\text{CS}}^{\text{Pred}} > \pi_{\text{E}}^{\text{Pred}} + \pi_{\text{I}}^{\text{Pred}} - \pi_{\text{E}}^{\text{Duo}} - \pi_{\text{I}}^{\text{Duo}} . $$
(60)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hüschelrath, K., Weigand, J. Predation enforcement options: an evaluation in a Cournot framework. Eur J Law Econ 35, 241–272 (2013). https://doi.org/10.1007/s10657-011-9227-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10657-011-9227-x

Keywords

JEL Classification

Navigation