Skip to main content

Advertisement

Log in

Mathematical models for the study of HIV spread and control amongst men who have sex with men

  • Review
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

For a quarter of century, mathematical models have been used to study the spread and control of HIV amongst men who have sex with men (MSM). We searched MEDLINE and EMBASE databases up to the end of 2010 and reviewed this literature to summarise the methodologies used, key model developments, and the recommended strategies for HIV control amongst MSM. Of 742 studies identified, 127 studies met the inclusion criteria. Most studies employed deterministic modelling methods (80%). Over time we saw an increase in model complexity regarding antiretroviral therapy (ART), and a corresponding decrease in complexity regarding sexual behaviours. Formal estimation of model parameters was carried out in only a small proportion of the studies (22%) while model validation was considered by an even smaller proportion (17%), somewhat reducing confidence in the findings from the studies. Nonetheless, a number of common conclusions emerged, including (1) identification of the importance of assumptions regarding changes in infectivity and sexual contact rates on the impact of ART on HIV incidence, that subsequently led to empirical studies to gather these data, and (2) recommendation that multiple strategies would be required for effective HIV control amongst MSM. The role of mathematical models in studying epidemics is clear, and the lack of formal inference and validation highlights the need for further developments in this area. Improved methodologies for parameter estimation and systematic sensitivity analysis will help generate predictions that more fully express uncertainty, allowing better informed decision making in public health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gottlieb MS, Schroff R, Schanker HM, Weisman JD, Fan PT, Wolf RA, et al. Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: evidence of a new acquired cellular immunodeficiency. N Engl J Med. 1981;305(24):1425–31.

    Article  PubMed  CAS  Google Scholar 

  2. UNAIDS. AIDS epidemic update: November 2009. Geneva: UNAIDS; 2009.

    Google Scholar 

  3. UNAIDS. HIV and men who have sex with men in Asia and the Pacific. Geneva: UNAIDS; 2006.

    Google Scholar 

  4. UNAIDS. Report on the global HIV/AIDS epidemic 2008. Geneva: UNAIDS; 2008.

    Google Scholar 

  5. Health Protection Agency. HIV in the United Kingdom: 2010 Report. London: Health Protection Agency (HPA); 2010.

    Google Scholar 

  6. Becker NG, Egerton LR. A transmission model for HIV with application to the Australian epidemic. Math Biosci. 1994;119(2):205–24.

    Article  PubMed  CAS  Google Scholar 

  7. Raggi R, Blanco GA. Epidemic model of HIV infection and AIDS in Argentina. Status in 1990 and predictive estimates. Medicina (B Aires). 1992;52(3):225–35.

    CAS  Google Scholar 

  8. Goodreau SM, Goicochea LP, Sanchez J. Sexual role and transmission of HIV Type 1 among men who have sex with men, in Peru. J Infect Dis. 2005;191(Suppl 1):S147–58.

    Article  PubMed  Google Scholar 

  9. Pickering J, Wiley JA, Padian NS, Lieb LE, Echenberg DF, Walker J. Modeling the incidence of acquired immunodeficiency syndrome (AIDS) in San Francisco, Los Angeles, and New York. Math Model. 1986;7:661–88.

    Article  Google Scholar 

  10. Anderson RM, Medley GF, May RM, Johnson AM. A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS. IMA J Math Appl Med Biol. 1986;3(4):229–63.

    Article  PubMed  CAS  Google Scholar 

  11. Knox EG. A transmission model for AIDS. Eur J Epidemiol. 1986;2(3):165–77.

    Article  PubMed  CAS  Google Scholar 

  12. May RM, Anderson RM. The transmission dynamics of human immunodeficiency virus (HIV). Philos Trans R Soc Lond B Biol Sci. 1988;321(1207):565–607.

    Article  PubMed  CAS  Google Scholar 

  13. Tan WY, Xiang Z. A state space model for the HIV epidemic in homosexual populations and some applications. Math Biosci. 1998;152(1):29–61.

    Article  PubMed  CAS  Google Scholar 

  14. Xiridou M, Geskus R, De Wit J, Coutinho R, Kretzschmar M. The contribution of steady and casual partnerships to the incidence of HIV infection among homosexual men in Amsterdam. AIDS. 2003;17(7):1029–38.

    Article  PubMed  Google Scholar 

  15. Tchetgen E, Kaplan EH, Friedland GH. Public health consequences of screening patients for adherence to highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2001;26(2):118–29.

    Article  PubMed  CAS  Google Scholar 

  16. Goudsmit J, Weverling GJ, van der Hoek L, de Ronde A, Miedema F, Coutinho RA, et al. Carrier rate of zidovudine-resistant HIV-1: the impact of failing therapy on transmission of resistant strains. AIDS. 2001;15(17):2293–301.

    Article  PubMed  CAS  Google Scholar 

  17. Hsu Schmitz SF. A mathematical model of HIV transmission in homosexuals with genetic heterogeneity. Comput Math Methods Med. 2000;2(4):285–96.

    Google Scholar 

  18. Hsu Schmitz SF. Effects of treatment or/and vaccination on HIV transmission in homosexuals with genetic heterogeneity. Math Biosci. 2000;167(1):1–18.

    Article  PubMed  CAS  Google Scholar 

  19. Blower SM, Gershengorn HB, Grant RM. A tale of two futures: HIV and antiretroviral therapy in San Francisco. Science. 2000;287(5453):650–4.

    Article  PubMed  CAS  Google Scholar 

  20. Smith RJ, Okano JT, Kahn JS, Bodine EN, Blower S. Evolutionary dynamics of complex networks of HIV drug-resistant strains: the case of San Francisco. Science. 2010;327(5966):697–701.

    Article  PubMed  CAS  Google Scholar 

  21. Breban R, McGowan I, Topaz C, Schwartz EJ, Anton P, Blower S. Modeling the potential impact of rectal microbicides to reduce HIV transmission in bathhouses. Math Biosci Eng. 2006;3(3):459.

    Article  PubMed  Google Scholar 

  22. Desai K, Sansom SL, Ackers ML, Stewart SR, Hall HI, Hu DJ, et al. Modeling the impact of HIV chemoprophylaxis strategies among men who have sex with men in the United States: HIV infections prevented and cost-effectiveness. AIDS. 2008;22(14):1829–39.

    Article  PubMed  Google Scholar 

  23. Anderson J, Wilson D, Templeton David J, Grulich A, Carter R, Kaldor J. Cost-effectiveness of adult circumcision in a resource-rich setting for HIV prevention among men who have sex with men. J Infect Dis. 2009;200(12):1803–12.

    Article  PubMed  Google Scholar 

  24. Cassels S, Menza TW, Goodreau SM, Golden MR. HIV serosorting as a harm reduction strategy: evidence from Seattle, Washington. AIDS. 2009;23(18):2497–506.

    Article  PubMed  Google Scholar 

  25. Greenhalgh D, Doyle M, Lewis F. A mathematical treatment of AIDS and condom use. IMA J Math Appl Med Biol. 2001;18(3):225–62.

    Article  PubMed  CAS  Google Scholar 

  26. Hethcote HW, Van Ark JW, Longini IM Jr. A simulation model of AIDS in San Francisco: I. Model formulation and parameter estimation. Math Biosci. 1991;106(2):203–22.

    Article  PubMed  CAS  Google Scholar 

  27. Hethcote HW, Van Ark JW, Karon JM. A simulation model of AIDS in San Francisco: II. Simulations, therapy, and sensitivity analysis. Math Biosci. 1991;106(2):223–47.

    Article  PubMed  CAS  Google Scholar 

  28. Tan WY, Ye Z. Estimation of HIV infection and incubation via state space models. Math Biosci. 2000;167(1):31–50.

    Article  PubMed  CAS  Google Scholar 

  29. Ahlgren DJ, Gorny MK, Stein AC. Model-based optimization of infectivity parameters: a study of the early epidemic in San Francisco. J Acquir Immune Defic Syndr. 1990;3(6):631–43.

    PubMed  CAS  Google Scholar 

  30. Tan WY, Xiang Z. The state-space model of the HIV epidemic with variable infection in the homosexual populations. J Stat Plan Inference. 1999;78(1–2):71–87.

    Article  Google Scholar 

  31. Wu H, Tan WY. Modelling the HIV epidemic: a state-space approach. Math Comput Model. 2000;32(1–2):197–215.

    Article  Google Scholar 

  32. Clements MS, Prestage G, Grulich A, Van de Ven P, Kippax S, Law MG. Modeling trends in HIV incidence among homosexual men in Australia 1995–2006. J Acquir Immune Defic Syndr. 2004;35(4):401–6.

    Article  PubMed  Google Scholar 

  33. Hoare A, Wilson DP, Regan DG, Kaldor J, Law MG. Using mathematical modelling to help explain the differential increase in HIV incidence in New South Wales, Victoria and Queensland: importance of other sexually transmissible infections. Sex Health. 2008;5(2):169–87.

    Article  PubMed  Google Scholar 

  34. Wilson DP. Modelling based on Australian HIV notifications data suggests homosexual age mixing is primarily assortative. J Acquir Immune Defic Syndr. 2009;51(3):356–60.

    PubMed  Google Scholar 

  35. The National Centre in HIV Epidemiology and Clinical Research. Surveillance. [WWW] 2011 [cited 2011 February 22]; Available from: http://www.nchecr.unsw.edu.au/NCHECRweb.nsf/page/Surveillance.

  36. Bezemer D, de Wolf F, Boerlijst MC, van Sighem A, Hollingsworth TD, Fraser C. 27 years of the HIV epidemic amongst men having sex with men in the Netherlands: an in depth mathematical model-based analysis. Epidemics. 2010;2(2):66–79.

    Article  PubMed  Google Scholar 

  37. Wilkie AD. Population projections for AIDS using an actuarial model. Philos Trans R Soc Lond B Biol Sci. 1989;325(1226):99–112.

    Article  PubMed  CAS  Google Scholar 

  38. Anderson RM, Medley GF, Blythe SP, Johnson AM. Is it possible to predict the minimum size of the acquired immunodeficiency syndrome (AIDS) epidemic in the United Kingdom? Lancet. 1987;1(8541):1073–5.

    Article  PubMed  CAS  Google Scholar 

  39. Anderson RM, Blythe SP, Gupta S, Konings E. The transmission dynamics of the human immunodeficiency virus type 1 in the male homosexual community in the United Kingdom: the influence of changes in sexual behaviour. Philos Trans R Soc Lond B Biol Sci. 1989;325(1226):45–98.

    Article  PubMed  CAS  Google Scholar 

  40. Daykin CD, Clark PNS, Haberman S, Le Grys DJ, Michaelson RW, Wilkie AD. Projecting the spread of AIDS in the United Kingdom: a sensitivity analysis. J Inst Actuar. 1990;117:95–133.

    Google Scholar 

  41. De Arazoza H, Lounesl R, Hoang T, Interian Y. Modeling HIV epidemic under contact tracing—the cuban case. Comput Math Methods Med. 2000;2(4):267–74.

    Google Scholar 

  42. Romieu I, Sandberg S, Mohar A, Awerbuch T. Modeling the AIDS epidemic in Mexico City. Hum Biol. 1991;63(5):683–95.

    PubMed  CAS  Google Scholar 

  43. Lou J, Wu J, Chen L, Ruan Y, Shao Y. A sex-role-preference model for HIV transmission among men who have sex with men in China. BMC Public Health. 2009;9(Suppl 1):S10.

    Article  PubMed  Google Scholar 

  44. Abu-Raddad LJ, Schiffer JT, Ashley R, Mumtaz G, Alsallaq RA, Akala FA, et al. HSV-2 serology can be predictive of HIV epidemic potential and hidden sexual risk behavior in the Middle East and North Africa. Epidemics. 2010;2(4):173–82.

    Article  PubMed  Google Scholar 

  45. Blythe SP, Anderson RM. Variable infectiousness in HIV transmission models. IMA J Math Appl Med Biol. 1988;5(3):181–200.

    Article  PubMed  CAS  Google Scholar 

  46. Thieme HR, Castillo-Chavez C. How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS? SIAM J Appl Math. 1993;53(5):1447–79.

    Article  Google Scholar 

  47. Jacquez JA, Koopman JS, Simon CP, Longini IM Jr. Role of the primary infection in epidemics of HIV infection in gay cohorts. J Acquir Immune Defic Syndr. 1994;7(11):1169–84.

    PubMed  CAS  Google Scholar 

  48. Xiridou M, Geskus R, de Wit J, Coutinho R, Kretzschmar M. Primary HIV infection as source of HIV transmission within steady and casual partnerships among homosexual men. AIDS. 2004;18(9):1311–20.

    Article  PubMed  Google Scholar 

  49. Koopman JS, Jacquez JA, Welch GW, Simon CP, Foxman B, Pollock SM, et al. The role of early HIV infection in the spread of HIV through populations. J Acquir Immune Defic Syndr Hum Retrovirol. 1997;14(3):249–58.

    Article  PubMed  CAS  Google Scholar 

  50. Rapatski BL, Suppe F, Yorke JA. HIV epidemics driven by late disease stage transmission. J Acquir Immune Defic Syndr. 2005;38(3):241–53.

    PubMed  Google Scholar 

  51. Gupta S, Anderson RM, May RM. Networks of sexual contacts: implications for the pattern of spread of HIV. AIDS. 1989;3(12):807–17.

    Article  PubMed  CAS  Google Scholar 

  52. Hyman JM, Stanley EA. Using mathematical models to understand the AIDS epidemic. Math Biosci. 1988;90:415–73.

    Article  Google Scholar 

  53. Hyman JM, Stanley EA. The effects of social mixing patterns on the spread of AIDS. Lect Notes Biomath. 1989;81:190–219.

    Google Scholar 

  54. Koopman J, Simon C, Jacquez J, Joseph J, Sattenspiel L, Park T. Sexual partner selectiveness effects on homosexual HIV transmission dynamics. J Acquir Immune Defic Syndr. 1988;1(5):486–504.

    PubMed  CAS  Google Scholar 

  55. Sattenspiel L, Koopman J, Simon C, Jacquez JA. The effects of population structure on the spread of the HIV infection. Am J Phys Anthropol. 1990;82(4):421–9.

    Article  PubMed  CAS  Google Scholar 

  56. Haraldsdottir S, Gupta S, Anderson RM. Preliminary studies of sexual networks in a male homosexual community in Iceland. J Acquir Immune Defic Syndr. 1992;5(4):374–81.

    PubMed  CAS  Google Scholar 

  57. Anderson RM, Gupta S, Ng W. The significance of sexual partner contact networks for the transmission dynamics of HIV. J Acquir Immune Defic Syndr. 1990;3(4):417–29.

    PubMed  CAS  Google Scholar 

  58. Gupta S, Anderson RM. Age-dependent sexual behaviour amongst male homosexuals and the transmission dynamics of HIV-1. Scand J Infect Dis Suppl. 1990;69:187–97.

    PubMed  CAS  Google Scholar 

  59. Hyman JM, Li J, Stanley EA. Threshold conditions for the spread of the HIV infection in age-structured populations of homosexual men. J Theor Biol. 1994;166(1):9–31.

    Article  PubMed  CAS  Google Scholar 

  60. Druten HV, Griensven FV, Hendriks J. Homosexual role separation: implications for analyzing and modeling the spread of HIV. J Sex Res. 1992;29(4):477–99.

    Article  Google Scholar 

  61. Wiley JA, Herschkorn SJ. Homosexual role separation and AIDS epidemics: insights from elementary models. J Sex Res. 1989;26(4):434–49.

    Article  Google Scholar 

  62. Alam SJ, Romero-Severson E, Kim JH, Emond G, Koopman JS. Dynamic sex roles among men who have sex with men and transmissions from primary HIV infection. Epidemiology. 2010;21(5):669–75.

    Article  PubMed  Google Scholar 

  63. Tan WY. Some general stochastic models for the spread of AIDS and some simulation results. Math Comput Model. 1991;15(2):19–39.

    Article  Google Scholar 

  64. Long EF, Brandeau ML, Owens DK. The cost-effectiveness and population outcomes of expanded HIV screening and antiretroviral treatment in the United States. Ann Intern Med. 2010;153(12):778–89.

    PubMed  Google Scholar 

  65. Long EF, Brandeau ML, Owens DK. Potential population health outcomes and expenditures of HIV vaccination strategies in the United States. Vaccine. 2009;27(39):5402–10.

    Article  PubMed  Google Scholar 

  66. Morris M, Dean L. Effect of sexual behavior change on long-term human immunodeficiency virus prevalence among homosexual men. Am J Epidemiol. 1994;140(3):217–32.

    PubMed  CAS  Google Scholar 

  67. Law MG, Prestage G, Grulich A, Van de Ven P, Kippax S. Modelling HIV incidence in gay men: increased treatment, unsafe sex and sexually transmissible infections. AIDS. 2002;16(3):499–501.

    Article  PubMed  Google Scholar 

  68. Blower S, Ma L. Calculating the contribution of herpes simplex virus type 2 epidemics to increasing HIV incidence: treatment implications. Clin Infect Dis. 2004;39(Suppl 5):S240–7.

    Article  PubMed  Google Scholar 

  69. Auld MC. Choices, beliefs, and infectious disease dynamics. J Health Econ. 2003;22(3):361–77.

    Article  PubMed  Google Scholar 

  70. Velasco-Hernandez JX, Gershengorn HB, Blower SM. Could widespread use of combination antiretroviral therapy eradicate HIV epidemics? Lancet Infect Dis. 2002;2(8):487–93.

    Article  PubMed  CAS  Google Scholar 

  71. Bezemer D, de Wolf F, Boerlijst MC, van Sighem A, Hollingsworth TD, Prins M, et al. A resurgent HIV-1 epidemic among men who have sex with men in the era of potent antiretroviral therapy. AIDS. 2008;22(9):1071–7.

    Article  PubMed  CAS  Google Scholar 

  72. Wilson DP, Hoare A, Regan DG, Law MG. Importance of promoting HIV testing for preventing secondary transmissions: modelling the Australian HIV epidemic among men who have sex with men. Sex Health. 2009;6(1):19–33.

    Article  PubMed  Google Scholar 

  73. Anderson RM, Gupta S, May RM. Potential of community-wide chemotherapy or immunotherapy to control the spread of HIV-1. Nature. 1991;350(6316):356–9.

    Article  PubMed  CAS  Google Scholar 

  74. Garnett GP, Anderson RM. Antiviral therapy and the transmission dynamics of HIV-1. J Antimicrob Chemother. 1996;37(Suppl B):135–50.

    PubMed  CAS  Google Scholar 

  75. Yang HM, Ferreira Junior WC. A population model applied to HIV transmission considering protection and treatment. IMA J Math Appl Med Biol. 1999;16(3):237–59.

    Article  Google Scholar 

  76. Del Valle S, Morales Evangelista A, Cristina Velasco M, Kribs-Zaleta CM, Hsu Schmitz S-F. Effects of education, vaccination and treatment on HIV transmission in homosexuals with genetic heterogeneity. Math Biosci. 2004;187(2):111–33.

    Article  PubMed  Google Scholar 

  77. Velasco-Hernandez JX, Hsieh YH. Modelling the effect of treatment and behavioral change in HIV transmission dynamics. J Math Biol. 1994;32(3):233–49.

    Article  PubMed  CAS  Google Scholar 

  78. Velasco-Hernandez JX, Brauer F, Castillo-Chavez C. Effects of treatment and prevalence-dependent recruitment on the dynamics of a fatal disease. IMA J Math Appl Med Biol. 1996;13(3):175–92.

    Article  PubMed  CAS  Google Scholar 

  79. Law MG, Prestage G, Grulich A, Van de Ven P, Kippax S. Modelling the effect of combination antiretroviral treatments on HIV incidence. AIDS. 2001;15(10):1287–94.

    Article  PubMed  CAS  Google Scholar 

  80. Owens DK, Edwards DM, Shachter RD. Population effects of preventive and therapeutic HIV vaccines in early- and late-stage epidemics. AIDS. 1998;12(9):1057–66.

    Article  PubMed  CAS  Google Scholar 

  81. Edwards DM, Shachter RD, Owens DK. A dynamic HIV-transmission model for evaluating the costs and benefits of vaccine programs. Interfaces. 1998;28(3):144–66.

    Article  Google Scholar 

  82. Gumel AB, McCluskey CC, van den Driessche P. Mathematical study of a staged-progression HIV model with imperfect vaccine. Bull Math Biol. 2006;68(8):2105–28.

    Article  PubMed  CAS  Google Scholar 

  83. Rida W, Sandberg S. Modeling the population level effects of an HIV-1 vaccine in an era of highly active antiretroviral therapy. Bull Math Biol. 2009;71(3):648–80.

    Article  PubMed  Google Scholar 

  84. Paltiel AD, Kaplan EH. Modeling zidovudine therapy: a cost-effectiveness analysis. J Acquir Immune Defic Syndr. 1991;4(8):795–804.

    PubMed  CAS  Google Scholar 

  85. Tuli K, Kerndt PR. Preventing sexually transmitted infections among incarcerated men who have sex with men: a cost-effectiveness analysis. Sex Transm Dis. 2009;36(2 Suppl):S41–8.

    PubMed  Google Scholar 

  86. Zaric GS, Bayoumi AM, Brandeau ML, Owens DK. The cost-effectiveness of counseling strategies to improve adherence to highly active antiretroviral therapy among men who have sex with men. Med Decis Mak. 2008;28(3):359–76.

    Article  Google Scholar 

  87. Gail MH, Preston D, Piantadosi S. Disease prevention models of voluntary confidential screening for human immunodeficiency virus (HIV). Stat Med. 1989;8(1):59–81.

    Article  PubMed  CAS  Google Scholar 

  88. Tao G, Remafedi G. Economic evaluation of an HIV prevention intervention for gay and bisexual male adolescents. J Acquir Immune Defic Syndr Hum Retrovirol. 1998;17(1):83–90.

    Article  PubMed  CAS  Google Scholar 

  89. Ng J, Orav EJ. A generalized chain binomial model with application to HIV infection. Math Biosci. 1990;101(1):99–119.

    Article  PubMed  CAS  Google Scholar 

  90. Bailey NT. An improved hybrid HIV/AIDS model geared to specific public health data and decision making. Math Biosci. 1993;117(1–2):221–37.

    Article  PubMed  CAS  Google Scholar 

  91. Bailey NTJ. The use of operational modeling of HIV/AIDS in a systems approach to public health decision making. Math Biosci. 1991;107(2):413–30.

    Article  PubMed  CAS  Google Scholar 

  92. Mode CJ, Gollwitzer HE, Salsburg MA, Sleeman CK. A methodological study of a nonlinear stochastic model of an AIDS epidemic with recruitment. IMA J Math Appl Med Biol. 1989;6(3):179–203.

    Article  PubMed  CAS  Google Scholar 

  93. Mode CJ, Sleeman CK. An algorithmic synthesis of the deterministic and stochastic paradigms via computer intensive methods. Math Biosci. 2002;180(1–2):115–26.

    Article  PubMed  Google Scholar 

  94. Tan WY. Stochastic models of HIV epidemic in homosexual populations—the effects of mixing patterns. Math Comput Model. 1991;15(12):37–65.

    Article  Google Scholar 

  95. Tan W-Y, Tang SC, Lee SR. Effects of randomness of risk factors on the HIV epidemic in homosexual populations. SIAM J Appl Math. 1995;55(6):1697–723.

    Article  Google Scholar 

  96. Tan WY, Hsu H. Some stochastic models of AIDS spread. Stat Med. 1989;8(1):121–36.

    Article  PubMed  CAS  Google Scholar 

  97. Tan WY. A stochastic model for the AIDS epidemic involving several risk populations. Math Comput Model. 1990;14:644–8.

    Article  Google Scholar 

  98. Jacquez JA, Simon CP, Koopman J, Sattenspiel L, Perry T. Modeling and analyzing HIV transmission: the effect of contact patterns. Math Biosci. 1988;92(2):119–99.

    Article  Google Scholar 

  99. Tan WY, Lee SR, Tang SC. Characterization of HIV infection and seroconversion by a stochastic model of the HIV epidemic. Math Biosci. 1995;126(1):81–123.

    Article  PubMed  CAS  Google Scholar 

  100. Anderson RM. The epidemiology of HIV infection: variable incubation plus infectious periods and heterogeneity in sexual activity. J R Stat Soc Ser A Stat Soc. 1988;151(1):66–98.

    Article  Google Scholar 

  101. Bailey NTJ. Simplified modelling of the population dynamics of HIV/AIDS. J R Stat Soc Ser A Stat Soc. 1988;151(1):31–4.

    Article  Google Scholar 

  102. Cairns AJG. Model fitting and projection of the AIDS epidemic. Math Biosci. 1991;107(2):451–89.

    Article  PubMed  CAS  Google Scholar 

  103. Fan DP. Quantitative estimates for the effects of AIDS public education on HIV infections. Int J Biomed Comput. 1993;33(3–4):157–77.

    Article  PubMed  CAS  Google Scholar 

  104. Supervie V, Garcia-Lerma JG, Heneine W, Blower S. HIV, transmitted drug resistance, and the paradox of preexposure prophylaxis. Proc Natl Acad Sci U S A. 2010;107(27):12381–6.

    Article  PubMed  CAS  Google Scholar 

  105. Reidy WJ, Goodreau SM. The role of commercial sex venues in the HIV epidemic among men who have sex with men. Epidemiology. 2010;21(3):349–59.

    Article  PubMed  Google Scholar 

  106. Inaba H. Endemic threshold results in an age-duration-structured population model for HIV infection. Math Biosci. 2006;201(1–2):15–47.

    Article  PubMed  Google Scholar 

  107. Wilkie AD. An actual model for AIDS. J R Stat Soc Ser A Stat Soc. 1988;151(1):35–9.

    Article  Google Scholar 

  108. Tan WY, Xiang Z. A stochastic model for the HIV epidemic in homosexual populations involving age and race. Math Comput Model. 1996;24:67–105.

    Article  Google Scholar 

  109. Heisterkamp SH, De Haan BJ, Jager JC, Van Druten JA, Hendriks JC. Short and medium term projections of the AIDS/HIV epidemic by a dynamic model with an application to the risk group of homo/bisexual men in Amsterdam. Stat Med. 1992;11(11):1425–41.

    Article  PubMed  CAS  Google Scholar 

  110. Blower SM, Aschenbach AN, Gershengorn HB, Kahn JO. Predicting the unpredictable: transmission of drug-resistant HIV. Nat Med. 2001;7(9):1016–20.

    Article  PubMed  CAS  Google Scholar 

  111. Boily M-C, Bastos FI, Desai K, Masse B. Changes in the transmission dynamics of the HIV epidemic after the wide-scale use of antiretroviral therapy could explain increases in sexually transmitted infections: results from mathematical models. Sex Transm Dis. 2004;31(2):100–13.

    Article  PubMed  Google Scholar 

  112. Gran JM, Wasmuth L, Amundsen EJ, Lindqvist BH, Aalen OO. Growth rates in epidemic models: application to a model for HIV/AIDS progression. Stat Med. 2008;27(23):4817–34.

    Article  PubMed  Google Scholar 

  113. Houshyar A. AIDS and voluntary screening among gay men. AIDS Public Policy J. 1991;6(1):46–53.

    Google Scholar 

  114. Blythe SP, Anderson RM. Distributed incubation and infectious periods in models of the transmission dynamics of the human immunodeficiency virus (HIV). IMA J Math Appl Med Biol. 1988;5(1):1–19.

    Article  PubMed  CAS  Google Scholar 

  115. Mode CJ, Gollwitzer HE, Herrmann N. A methodological study of a stochastic model of an AIDS epidemic. Math Biosci. 1988;92(2):201–29.

    Article  Google Scholar 

  116. Malunguza N, Mushayabasa S, Chiyaka C, Mukandavire Z. Modelling the effects of condom use and antiretroviral therapy in controlling HIV/AIDS among heterosexuals, homosexuals and bisexuals. Comput Math Methods Med. 2010;11(3):201–22.

    Article  PubMed  Google Scholar 

  117. Kaplan EH. Worst case analysis of sexual mixing models of HIV transmission. J Sex Res. 1991;28(1):29–44.

    Article  Google Scholar 

  118. Goodreau SM, Golden MR. Biological and demographic causes of high HIV and sexually transmitted disease prevalence in men who have sex with men. Sex Transm Infect. 2007;83(6):458–62.

    Article  PubMed  Google Scholar 

  119. Underhill K, Montgomery P, Operario D. Sexual abstinence only programmes to prevent HIV infection in high income countries: systematic review. BMJ. 2007;335(7613):248.

    Article  PubMed  Google Scholar 

  120. Presanis AM, Gill ON, Chadborn TR, Hill C, Hope V, Logan L, et al. Insights into the rise in HIV infections, 2001 to 2008: a Bayesian synthesis of prevalence evidence. AIDS. 2010;24(18):2849–58.

    Article  PubMed  Google Scholar 

  121. Le Vu S, Le Strat Y, Barin F, Pillonel J, Cazein F, Bousquet V, et al. Population-based HIV-1 incidence in France, 2003–08: a modelling analysis. Lancet Infect Dis. 2010;10(10):682–7.

    Article  PubMed  Google Scholar 

  122. De Angelis D, Sweeting M, Ades A, Hickman M, Hope V, Ramsay M. An evidence synthesis approach to estimating Hepatitis C Prevalence in England and Wales. Stat Methods Med Res. 2009;18(4):361–79.

    Article  PubMed  Google Scholar 

  123. Goubar A, Ades A, De Angelis D, McGarrigle CA, Mercer CH, Tookey PA, et al. Estimates of human immunodeficiency virus prevalence and proportion diagnosed based on Bayesian multiparameter synthesis of surveillance data. J R Stat Soc Ser A Stat Soc. 2008;171(3):541–80.

    Article  Google Scholar 

  124. Boily MC, Lowndes CM, Vickerman P, Kumaranayake L, Blanchard J, Moses S, et al. Evaluating large-scale HIV prevention interventions: study design for an integrated mathematical modelling approach. Sex Transm Infect. 2007;83(7):582–9.

    Article  PubMed  Google Scholar 

  125. Watts CH, May RM. The influence of concurrent partnerships on the dynamics of HIV/AIDS. Math Biosci. 1992;108(1):89–104.

    Article  PubMed  CAS  Google Scholar 

  126. Huang W, Cooke KL, Castillo-Chavez C. Stability and bifurcation for a multiple-group model for the dynamics of HIV/AIDS transmission. SIAM J Appl Math. 1992;52(3):835–54.

    Article  Google Scholar 

  127. Lima VD, Hogg RS, Montaner JS. Expanding HAART treatment to all currently eligible individuals under the 2008 IAS-USA Guidelines in British Columbia, Canada. PLoS ONE. 2010;5(6):e10991.

    Article  PubMed  CAS  Google Scholar 

  128. Londish GJ, Templeton DJ, Regan DG, Kaldor JM, Murray JM. Minimal impact of circumcision on HIV acquisition in men who have sex with men. Sex Health. 2010;7(4):463–70.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr Voralak Vichapat for assistance in revising the text, and the anonymous reviewers for their helpful comments. NP is supported by educational grant from the London School of Hygiene and Tropical Medicine and the Health Protection Agency. DDA is supported by the Health Protection Agency and the Medical Research Council (UK) (U.1052.00.007). RGW is funded by a Medical Research Council (UK) Methodology Research Fellowship (G0802414), the Bill and Melinda Gates Foundation (19790.01), and the EU (242061). The funders had no involvement in the design, collection, analysis or interpretation of the data, in writing the report or in the decision to submit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narat Punyacharoensin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Punyacharoensin, N., Edmunds, W.J., De Angelis, D. et al. Mathematical models for the study of HIV spread and control amongst men who have sex with men. Eur J Epidemiol 26, 695–709 (2011). https://doi.org/10.1007/s10654-011-9614-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-011-9614-1

Keywords

Navigation