Skip to main content
Log in

Non-targeted impact of cyantraniliprole residues on soil quality, mechanism of residue degradation, and isolation of potential bacteria for its bioremediation

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Cyantraniliprole (CY), an anthranilic diamide insecticide widely used in grape farming for controlling various sucking pests, poses ecological concerns, particularly when applied as soil drenching due to the formation of more toxic and persistent metabolites. This study established the dissipation and degradation mechanisms of CY in grape rhizosphere soil using high-resolution Orbitrap-LC/MS analysis. The persistence of CY residues beyond 60 days was observed, with dissipation following biphasic first + first-order kinetics and a half-life of 15 to 21 days. The degradation mechanism of CY in the soil was elucidated, with identified metabolites such as IN-J9Z38, IN-JCZ38, IN-N7B69, and IN-QKV54. Notably, CY was found to predominantly convert to the highly persistent metabolite IN-J9Z38, raising environmental concerns. The impact of CY residues on soil enzyme activity was investigated, revealing a negative effect on dehydrogenase, alkaline phosphatase, and acid phosphatase activity, indicating significant implications for phosphorous mineralization and soil health. Furthermore, bacterial isolates were obtained from CY-enriched soil, with five isolates (CY3, CY4, CY9, CY11, and CY20) demonstrating substantial degradation potential, ranging from 66 to 92% of CY residues. These results indicate that the identified bacteria hold potential for commercial use in addressing pesticide residue contamination in soil through bioremediation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdulrahman, S. S., Daştan, S. D., Shahbaz, S. E., & Selamoglu, Z. (2023). Phylogenetic analysis of Prunus genus using nuclear and chloroplast gene markers as a bioorganic structure profiling. Journal of Molecular Structure, 1284, 135300. https://doi.org/10.1016/j.molstruc.2023.135300

    Article  CAS  Google Scholar 

  • Anastassiadou, M., Brancato, A., Carrasco Cabrera, L., Greco, L., Jarrah, S., Kazocina, A., Leuschner, R., Magrans, J. O., Miron, I., & Nave, S. (2019). Modification of the existing maximum residue levels for cyantraniliprole in Chinese cabbages, blackberries, and raspberries. EFSA Journal, 17(11), 05903. https://doi.org/10.2903/j.efsa.2019.5903

    Article  Google Scholar 

  • Anhalt, J. C., Moorman, T. B., & Koskinen, W. C. (2007). Biodegradation of imidacloprid by an isolated soil microorganism. Journal of Environmental Science and Health, Part B, 42(5), 509–514. https://doi.org/10.1080/03601230701391401

    Article  CAS  Google Scholar 

  • Bhatt, P., Rene, E. R., Kumar, A. J., Gangola, S., Kumar, G., Sharma, A., Zhang, W., & Chen, S. (2021). Fipronil degradation kinetics and resource recovery potential of Bacillus sp. strain FA4 isolated from a contaminated agricultural field in Uttarakhand, India. Chemosphere, 276, 130156. https://doi.org/10.1016/j.chemosphere.2021.130156

    Article  CAS  Google Scholar 

  • Cycoń, M., Piotrowska-Seget, Z., & Kozdrój, J. (2010). Microbial characteristics of sandy soils exposed to diazinon under laboratory conditions. World Journal of Microbiology & Biotechnology, 26, 409–418. https://doi.org/10.1007/s11274-009-0183-3

    Article  CAS  Google Scholar 

  • da Silva Scarton, S. R., Tsuzuki, F., Guerra, M. T., Dos Santos, D. P., Dos Santos, A. C., Guimarães, A. T. B., Simão, A. N. C., Beu, C. C. L., & Fernades, G. S. A. (2022). Cyantraniliprole impairs reproductive parameters by inducing oxidative stress in adult female wistar rats. Reproductive Toxicology, 107, 166–174. https://doi.org/10.1016/j.reprotox.2021.12.009

    Article  CAS  Google Scholar 

  • Dindar, E., Şağban, F. O., & Başkaya, H. S. (2015). Evaluation of soil enzyme activities as soil quality indicators in sludge-amended soils. Journal of Environmental Biology, 36(4), 919–926.

    CAS  Google Scholar 

  • Dong, F., Liu, X., Xu, J., Li, J., Li, Y., Shan, W., Song, W., & Zheng, Y. (2012). Determination of cyantraniliprole and its major metabolite residues in vegetable and soil using ultra-performance liquid chromatography/tandem mass spectrometry. Biomedical Chromatography, 26(3), 377–383. https://doi.org/10.1002/bmc.1669

    Article  CAS  Google Scholar 

  • Dzionek, A., Wojcieszyńska, D., & Guzik, U. (2016). Natural carriers in bioremediation: A review. Electronic Journal of Biotechnology, 23, 28–36. https://doi.org/10.1016/j.ejbt.2016.07.003

    Article  Google Scholar 

  • European Food Safety Authority. (2014). Conclusion on the peer review of the pesticide risk assessment of the active substance cyantraniliprole. EFSA Journal, 12(9), 3814. https://doi.org/10.2903/j.efsa.2014.3814

    Article  CAS  Google Scholar 

  • Fahmy, M. A., Salem, S. H., Qattan, S. Y., Abourehab, M. A., Ashkan, M. F., Al-Quwaie, D. A., Abd El-Fattah, H. I., & Akl, B. A. (2022). Biodegradation of chlorantraniliprole and flubendiamide by some bacterial strains isolated from different polluted sources. Processes, 10(12), 2527. https://doi.org/10.3390/pr10122527

    Article  CAS  Google Scholar 

  • Guangming, L., Xuechen, Z., Xiuping, W., Hongbo, S., Jingsong, Y., & Xiangping, W. (2017). Soil enzymes as indicators of saline soil fertility under various soil amendments. Agriculture, Ecosystems & Environment, 237, 274–279. https://doi.org/10.1016/j.agee.2017.01.004

    Article  CAS  Google Scholar 

  • Hu, X., Zhang, C., Zhu, Y., Wu, M., Cai, X., Ping, L., & Li, Z. (2013). Determination of residues of cyantraniliprole and its metabolite J9Z38 in watermelon and soil using ultra-performance liquid chromatography/mass spectrometry. Journal of AOAC International, 96(6), 1448–1452. https://doi.org/10.5740/jaoacint.12-423

    Article  CAS  Google Scholar 

  • Hua, S., Gong, J. L., Zeng, G. M., Yao, F. B., Guo, M., & Ou, X. M. (2017). Remediation of organochlorine pesticides contaminated lake sediment using activated carbon and carbon nanotubes. Chemosphere, 177, 65–76. https://doi.org/10.1016/j.chemosphere.2017.02.133

    Article  CAS  Google Scholar 

  • Huang, Y., Chen, W. J., Li, J., Ghorab, M. A., Alansary, N., El-Hefny, D. E., El-Sayyad, G. S., Mishra, S., Zhang, X., Bhatt, P., & Chen, S. (2022). Novel mechanism and degradation kinetics of allethrin using Bacillus megaterium strain HLJ7 in contaminated soil/water environments. Environmental Research, 214, 113940. https://doi.org/10.1016/j.envres.2022.113940

    Article  CAS  Google Scholar 

  • Hui, D., Mayes, M. A., & Wang, G. (2013). Kinetic parameters of phosphatase: A quantitative synthesis. Soil Biology and Biochemistry, 65, 105–113. https://doi.org/10.1016/j.soilbio.2013.05.017

    Article  CAS  Google Scholar 

  • Huynh, K., Corkidi, L., Leonard, E., Palmer, C., Bethke, J., & Tharayil, N. (2021). Dissipation and transformation of the diamide insecticide cyantraniliprole in ornamental snapdragon (Antirrhinum majus). Chemosphere, 281, 130753. https://doi.org/10.1016/j.chemosphere.2021.130753

    Article  CAS  Google Scholar 

  • Isworo, S., & Oetari, P. S. (2021). The chemical compounds from degradation of profenofos and malathion by indigenous bacterial consortium. Journal of Pure and Applied Microbiology, 15(2), 897–915. https://doi.org/10.22207/JPAM.15.2.47

    Article  Google Scholar 

  • Jin, D., Kong, X., Liu, H., Wang, X., Deng, Y., Jia, M., & Yu, X. (2016). Characterization and genomic analysis of a highly efficient dibutyl phthalate-degrading bacterium Gordonia sp. strain QH-12. International Journal of Molecular Sciences, 17(7), 1012. https://doi.org/10.3390/ijms17071012

    Article  CAS  Google Scholar 

  • Jyot, G., Mandal, K., & Singh, B. (2015). Effect of dehydrogenase, phosphatase and urease activity in cotton soil after applying thiamethoxam as seed treatment. Environmental Monitoring and Assessment, 187, 1–7. https://doi.org/10.1007/s10661-015-4432-7

    Article  CAS  Google Scholar 

  • Karakayali, E. M., Kekeç, D., Tuna, Ö. N. A. L., & TUĞLU, M. I. (2020). Investigation of the moderate toxicity of agricultural pesticides cyantraniliprole, boscalid and spiromesifen in vitro using neurotoxicity screening test. Anatomy, 15(1), 1–10.

    Article  Google Scholar 

  • Kulkarni, A. G., & Kaliwal, B. B. (2014). Bioremediation of methomyl by soil isolate—Pseudomonas aeruginosa. Journal of Environmental Science Toxicology and Food Technology, 8(12), 1–10. https://doi.org/10.9790/2402-081240110

    Article  Google Scholar 

  • Kumar, N., & Gupta, S. (2020). Persistence and degradation of cyantraniliprole in soil under the influence of varying light sources, temperatures, moisture regimes and carbon dioxide levels. Journal of Environmental Science and Health Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 55(12), 1032–1040. https://doi.org/10.1080/03601234.2020.1808416

    Article  CAS  Google Scholar 

  • Kumar, S., Chaudhuri, S., & Maiti, S. K. (2013). Soil dehydrogenase enzyme activity in natural and mine soil-a review. Middle-East Journal of Scientific Research, 13(7), 898–906. https://doi.org/10.5829/idosi.mejsr.2013.13.7.2801

    Article  CAS  Google Scholar 

  • Kumar, Y. B., Shabeer, T. A., Jadhav, M., Banerjee, K., Hingmire, S., Saha, S., & Rai, A. B. (2020). Analytical method validation, dissipation and safety evaluation of combination fungicides fenamidone+ mancozeb and iprovalicarb+ propineb in/on tomato. Journal of Food Science and Technology, 57, 2061–2069. https://doi.org/10.1007/s13197-020-04240-9

    Article  CAS  Google Scholar 

  • Lee, J., Jung, M. W., Lee, J., Lee, J., Shin, Y., & Kim, J. H. (2019). Dissipation of the insecticide cyantraniliprole and its metabolite IN-J9Z38 in proso millet during cultivation. Science and Reports, 9(1), 11648. https://doi.org/10.1038/s41598-019-48206-0

    Article  CAS  Google Scholar 

  • Liu, X., Ji, J., Zhang, X., Chen, Z., He, L., & Wang, C. (2022). Microbial remediation of crude oil in saline conditions by oil-degrading bacterium Priestia megaterium FDU301. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-022-04245-4

    Article  Google Scholar 

  • Madakka, M., Srinivasulu, M., Mohiddin, G. J., Rangaswamy, V., Leite, L. F., & Madari, B. E. (2011). Effect of pesticides on microbial diversity and urease in groundnut (arachis hypogaea l.) soil. Nuclear Physics B-Proceedings Supplements, 117, 843–846.

    Google Scholar 

  • Mahapatra, B., Adak, T., Patil, N. K., Gowda, G. B., Jambhulkar, N. N., Yadav, M. K., Panneerselvam, P., Kumar, U., Munda, S., & Jena, M. (2017). Imidacloprid application changes microbial dynamics and enzymes in rice soil. Ecotoxicology and Environmental Safety, 144, 123–130. https://doi.org/10.1016/j.ecoenv.2017.06.013

    Article  CAS  Google Scholar 

  • Mailappa, A. S. (2023). Experimental Soil Fertility and Biology. CRC Press.

    Book  Google Scholar 

  • Majumder, S. P., & Das, A. C. (2016). Phosphate-solubility and phosphatase activity in Gangetic alluvial soil as influenced by organophosphate insecticide residues. Ecotoxicology and Environmental Safety, 126, 56–61. https://doi.org/10.1016/j.ecoenv.2015.12.018

    Article  CAS  Google Scholar 

  • Mauffret, A., Baran, N., & Joulian, C. (2017). Effect of pesticides and metabolites on groundwater bacterial community. Science of the Total Environment, 576, 879–887. https://doi.org/10.1016/j.scitotenv.2016.10.108

    Article  CAS  Google Scholar 

  • Meng, X. Z., Niu, G. L., Yang, W. M., & Cao, X. S. (2015). Di(2-ethylhexyl) phthalate biodegradation and denitrification by a Pseudoxanthomonas. Sp. strain. Bioresource Technology, 180, 356–359.

    Article  CAS  Google Scholar 

  • Mohammadi, K., Heidari, G., Khalesro, S., & Sohrabi, Y. (2011). Soil management, microorganisms and organic matter interactions: A review. African Journal of Biotechnology, 10(86), 19840.

    CAS  Google Scholar 

  • Mousa, N. K., Ali, A. J., & Hussein, M. (2021). Bacillus Megaterium Biodegradation Glyphosate. Biodegradation Technology of Organic and Inorganic Pollutants. IntechOpen.

    Google Scholar 

  • Obaid, R. J. (2021). Synthesis and biological evaluation of some new imidazo [1, 2-c] pyrimido [5, 4-e] pyrimidin-5-amine derivatives. Umm Al-Qura University Journal of Applied Sciences, 7(1), 16–22.

    Google Scholar 

  • Ortiz-Hernández, M. L., Rodríguez, A., Sánchez-Salinas, E., & Castrejón-Godínez, M. L. (2014). Bioremediation of soils contaminated with pesticides: Experiences in Mexico. Bioremediation in Latin America (pp. 69–99). Springer Berlin/Heidelberg.

    Chapter  Google Scholar 

  • Pang, S., Lin, Z., Chen, W. J., Chen, S. F., Huang, Y., Lei, Q., Bhatt, P., Mishra, S., Chen, S., & Wang, H. (2023). High-efficiency degradation of methomyl by the novel bacterial consortium MF0904: Performance, structural analysis, metabolic pathways, and environmental bioremediation. Journal of Hazardous Materials, 452, 131287. https://doi.org/10.1016/j.jhazmat.2023.131287

    Article  CAS  Google Scholar 

  • Prasad, B., & Suresh, S. (2015). Biodegradation of dimethyl phthalate ester using free cells, entrapped cells of Variovorax. sp. BS1 and cell free enzyme extracts: A comparative study. International Biodeterioration Biodegradation, 97, 179–187.

    Article  CAS  Google Scholar 

  • Ramudu, A. C., Mohiddin, G. J., Srinivasulu, M., Madakka, M., & Rangaswamy, V. (2011). Impact of fungicides chlorothalonil and propiconazole on microbial activities in groundnut (Arachis hypogaea L.) soils. Int Sch Res Notices, 2011, 1–7. https://doi.org/10.5402/2011/623404

    Article  CAS  Google Scholar 

  • Romero, E., Fernández-Bayo, J., Díaz, J. M. C., & Nogales, R. (2010). Enzyme activities and diuron persistence in soil amended with vermicompost derived from spent grape marc and treated with urea. Applied Soil Ecology, 44(3), 198–204. https://doi.org/10.1016/j.apsoil.2009.12.006

    Article  Google Scholar 

  • Sabale, R. P., Shabeer, T. P. A., Utture, S. C., Banerjee, K., Oulkar, D. P., Adsule, P. G., & Deshmukh, M. B. (2015). Kresoxim methyl dissipation kinetics and its residue effect on soil extra-cellular and intra-cellular enzymatic activity in four different soils of India. Journal of Environmental Science and Health Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 50, 90–98. https://doi.org/10.1080/03601234.2015.975600

    Article  CAS  Google Scholar 

  • Saengsanga, T., & Phakratok, N. (2023). Biodegradation of chlorpyrifos by soil bacteria and their effects on growth of rice seedlings under pesticide-contaminated soil. Plant, Soil and Environment, 69(5), 210–220.

    Article  CAS  Google Scholar 

  • Sahoo, S., Adak, T., Bagchi, T. B., Kumar, U., Munda, S., Saha, S., Berliner, J., Jena, M., & Mishra, B. B. (2016). Non-target effects of pretilachlor on microbial properties in tropical rice soil. Environmental Science and Pollution Research, 23, 7595–7602. https://doi.org/10.1007/s11356-015-6026

    Article  Google Scholar 

  • Sahoo, S., Adak, T., Bagchi, T. B., Kumar, U., Munda, S., Saha, S., Berliner, J., Jena, M., & Mishra, B. B. (2017). Effect of pretilachlor on soil enzyme activities in tropical rice soil. Bulletin of Environmental Contamination and Toxicology, 98, 439–445. https://doi.org/10.1007/s00128-016-1943

    Article  CAS  Google Scholar 

  • Sahu, M., Adak, T., Patil, N. B., Gowda, G. B., Yadav, M. K., Annamalai, M., Golive, P., Rath, P. C., & Jena, M. (2019). Dissipation of chlorantraniliprole in contrasting soils and its effect on soil microbes and enzymes. Ecotoxicology and Environmental Safety, 180, 288–294. https://doi.org/10.1016/j.ecoenv.2019.05.024

    Article  CAS  Google Scholar 

  • SANTE (2021). Guidance document on method validation and quality control procedure for food and feed (implemented by January 01, 2022). SANTE/11312/2021.

  • Sharma, S. (2012). Punjab Agricultural University. Ludhiana.

    Google Scholar 

  • Szerement, J., Kowalski, A., Mokrzycki, J., Marcińska-Mazur, L., & Mierzwa-Hersztek, M. (2023). Restoration of soils contaminated with PAHs by the mixture of zeolite composites mixed with exogenous organic matter and mineral salts. Scientific Reports, 13(1), 14227. https://doi.org/10.1038/s41598-023-41429-2

    Article  CAS  Google Scholar 

  • Tripathi, S., Srivastava, P., Devi, R. S., & Bhadouria, R. (2020). Influence of synthetic fertilizers and pesticides on soil health and soil microbiology. Agrochemicals detection, treatment and remediation (pp. 25–54). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-08-103017-2.00002-7

    Chapter  Google Scholar 

  • Wu, J., Liao, X., Yu, F., Wei, Z., & Yang, L. (2012). Cloning of a dibutyl phthalate hydrolase gene from Acinetobacter. Applied Microbiology and Biotechnology, 97, 2483–2491.

    Article  Google Scholar 

  • Wyszkowska, J., & Wyszkowski, M. (2010). Activity of soil dehydrogenases, urease, and acid and alkaline phosphatases in soil polluted with petroleum. Journal of Toxicology and Environmental Health, Part A, 73(17–18), 1202–1210. https://doi.org/10.1080/15287394.2010.492004

    Article  CAS  Google Scholar 

  • Xu, C., Fan, Y., Zhang, X., Kong, W., Miao, W., & Li, Q. X. (2020). DNA damage in liver cells of the tilapia fish Oreochromis mossambicus larva induced by the insecticide cyantraniliprole at sublethal doses during chronic exposure. Chemosphere, 238, 124586. https://doi.org/10.1016/j.chemosphere.2019.124586

    Article  CAS  Google Scholar 

  • Xue, Y., Li, Z., Liu, C., Liu, D., Wang, J., Liu, C., & Xia, X. (2023). Effect of different exposure times and doses of cyantraniliprole on oxidative stress and genotoxicity in earthworms (Eisenia fetida). Chemosphere, 319, 138023. https://doi.org/10.1016/j.chemosphere.2023.138023

    Article  CAS  Google Scholar 

  • Zhang, C., Hu, X., Zhao, H., Wu, M., He, H., Zhang, C., Tang, T., Ping, L., & Li, Z. (2013). Residues of cyantraniliprole and its metabolite J9Z38 in rice field ecosystem. Chemosphere, 93(1), 190–195. https://doi.org/10.1016/j.chemosphere.2013.05.033

    Article  CAS  Google Scholar 

  • Zhang, X., Wang, X., Liu, Y., Fang, K., & Liu, T. (2020). Residue and toxicity of cyantraniliprole and its main metabolite J9Z38 in soil-earthworm microcosms. Chemosphere, 249, 126479. https://doi.org/10.1016/j.chemosphere.2020.126479

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Director, ICAR-National Research Centre for Grapes, Pune, India, and the Chairman, Agricultural & Processed Food Products Export Development Authority (APEDA), Ministry of Commerce, Government of India, New Delhi, India for providing infrastructural facilities to accomplish this project.

Funding

This manuscript was prepared without the support of any funds, grants, or other sources.

Author information

Authors and Affiliations

Authors

Contributions

Ahammed Shabeer Thekkumpurath, Anuradha Upadhyay: Conceptualization, Methodology, Design, and final manuscript; Vrushali Bhanbhane, Sachin Ekatpure, Anita Pardeshi, Prabhavati Ghotgalkar, Pushpa Deore, Nasiruddin Shaikh: Execution of experiment, statistical evaluation, and preliminary draft preparation.

Corresponding author

Correspondence to Ahammed Shabeer Thekkumpurath.

Ethics declarations

Conflict of interest

The authors declare that there are no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent to participate

The study was conducted with the informed consent of all participants."

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhanbhane, V., Ekatpure, S., Pardeshi, A. et al. Non-targeted impact of cyantraniliprole residues on soil quality, mechanism of residue degradation, and isolation of potential bacteria for its bioremediation. Environ Geochem Health 46, 171 (2024). https://doi.org/10.1007/s10653-024-01955-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-024-01955-y

Keywords

Navigation