Skip to main content

Advertisement

Log in

Evaluation of non-cancer risk owing to groundwater fluoride and iron in a semi-arid region near the Indo-Bangladesh international frontier

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Groundwater quality in Hili, a semi-arid border region at Indo-Bangladesh border, was investigated in the post-monsoon season of 2021, succeeded by assessment of probabilistic health risk arising from fluoride (F) and iron (Fe) intake, with the hypothesis that groundwater quality of the region was not satisfactory for human consumption and health, considering earlier reports on high groundwater F and Fe in few of the neighboring districts. All water samples were found to be potable in terms of Ca2+, Mg2+, Cl, SO42− and NO3−, , but F and Fe exceeded prescribed safe limits for drinking water in about 48% and 7% samples. Almost all water samples were found to be good for irrigation in terms of sodium adsorption ratio (SAR), soluble sodium percentage (SSP), Kelly’s index (KI), %Na and magnesium ratio (MR). The principal component analysis (PCA) identified three major factors influencing groundwater quality, explaining about 71.8% of total variance and indicated that groundwater quality was primarily influenced by geochemical factors. Carbonate and silicate weathering were mainly responsible for dissolution of minerals in groundwater. Non-carcinogenic risk due to cumulative impact of Fand Fe intake was in the order of THIChildren > THIInfant > THIAdult. As per Monte Carlo simulation run with 5000 trials to ascertain the order of probabilistic health risk, the most dominant governing factors behind non-carcinogenic risk caused by Fand Fe intake were their concentration (Ci) followed by ingestion rate (IR), and exposure duration (ED).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

PCA:

Principal component analysis

FA:

Factor analysis

WHO:

World Health Organization

USEPA:

United States Environmental Protection Agency

CGWB:

Central Ground water Board (Government of India)

SAR:

Sodium adsorption ratio

SSP:

Soluble sodium percentage

KI:

Kelly’s ratio

MR:

Magnesium ratio

PI:

Permeability index

References

  • Adimalla, N. (2020). Heavy metals pollution assessment and its associated human health risk evaluation of urban soils from Indian cities: A review. Environmental Geochemistry and Health, 42, 173–190. https://doi.org/10.1007/s10653-019-00324-4

    Article  CAS  PubMed  Google Scholar 

  • Adimalla, N., Li, P., & Qian, H. (2018a). Evaluation of groundwater contamination for fluoride and nitrate in semi-arid region of Nirmal province, South India: A special emphasis on human health risk assessment (HHRA). Human and Ecological Risk Assessment, 25(5), 1–18. https://doi.org/10.1080/10807039.2018.1460579

    Article  CAS  Google Scholar 

  • Adimalla, N., Li, P., & Venkatayogi, S. (2018b). Hydrogeochemical evaluation of groundwater quality for drinking and irrigation purposes and integrated interpretation with water quality index studies. Environmental Processes, 5, 363–383. https://doi.org/10.1007/s40710-018-0297-4

    Article  CAS  Google Scholar 

  • Ahmed, N., Bodrud-Doza, M., Islam, A. R. M. T., Hossain, S., Moniruzzaman, M., Deb, N., & Bhuiyan, M. A. Q. (2019a). Appraising spatial variations of As, Fe, Mn and NO3 contaminations associated health risks of drinking water from Surma basin, Bangladesh. Chemosphere, 218, 726–740. https://doi.org/10.1016/j.chemosphere.2018.11.104

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ahmed, N., Bodrud-Doza, M., Islam, S. D. U., Choudhry, M. A., Muhib, M. I., Zahid, A., Hossain, S., Moniruzzaman, M., Deb, N., & Bhuiyan, M. A. Q. (2019b). Hydrogeochemical evaluation and statistical analysis of groundwater of Sylhet, north–eastern Bangladesh. Acta Geochimica, 38, 440–455. https://doi.org/10.1007/s11631-018-0303-6

    Article  CAS  Google Scholar 

  • Ali, S., Thakur, S. K., Sarkar, A., & Shekhar, S. A. (2016). Worldwide contamination of water by fluoride. Environmental Chemistry Letters, 14, 291–315. https://doi.org/10.1007/s10311-016-0563-5

    Article  CAS  Google Scholar 

  • Arlappa, N., Qureshi, A. I., & Srinivas, R. (2013). Fluorosis in India: An overview. International Journal of Research Development and Health, 1, 97–102.

    Google Scholar 

  • Asad, H. L., Moniruzzaman, M., Sarkar, A. K., Bhuiyan, M. A. Q., & Ahsan, M. A. (2023). Hydrogeochemical evaluation, groundwater contamination and associated health risk in southern Tangail. Bangladesh. Chemosphere, 332, 138806. https://doi.org/10.1016/j.chemosphere.2023.138806

    Article  CAS  PubMed  Google Scholar 

  • Ayoob, S., & Gupta, A. K. (2006). Fluoride in drinking water: A review on the status and stress effects. Critical Review in Environmental Science and Technology, 36(6), 433–487. https://doi.org/10.1080/10643380600678112

    Article  CAS  Google Scholar 

  • Bazeli, J., Ghalehaskar, S., Morovati, M., Soleimani, H., Masoumi, S., Sani, A. R., Saghi, M. H., & Rastegar, A. (2022). Health risk assessment techniques to evaluate non-carcinogenic human health risk due to fluoride, nitrite and nitrate using Monte Carlo simulation and sensitivity analysis in groundwater of Khaf County. Iranian International Journal of Environmental and Analytical Chemistry, 102(8), 1793–1813. https://doi.org/10.1080/03067319.2020.1743280

    Article  CAS  Google Scholar 

  • Belkhiri, L., & Mouni, L. (2012). Hydrochemical analysis and evaluation of groundwater quality in El Eulma area, Algeria. Applied Water Science, 2, 127–133. https://doi.org/10.1007/s13201-012-0033-6

    Article  ADS  CAS  Google Scholar 

  • Berner, E. K., & Berner, R. A. (1987). The global water cycle, geochemistry and environment. Prentice-Hall.

    Google Scholar 

  • Bureau of Indian Standards. (1988). IS3025:1988, Method of sampling and testing (physical & chemical) for water and waste water. Bureau of Indian Standards. India.New Delhi, India.

    Google Scholar 

  • Bureau of Indian Standards. (2012a). IS 10500:2012 (Amendment No. 1, June 2015) Indian Standard: drinking water-specification (second revision). Bureau of Indian Standards. New Delhi, India.

    Google Scholar 

  • Bureau of Indian Standards. (2012b). IS 10500:2012, Indian Standard: drinking water-specification (second revision). Bureau of Indian Standards. New Delhi, India.

    Google Scholar 

  • Census of India (2011). National population register & socio economic and caste census. India.

  • CGWB. (2018). Groundwater yearbook of West Bengal & Andaman & Nicobar Island. Technical report series “D”. No 283. A:03. Central Groundwater Board

  • CGWB. (2019). Ground water year book of West Bengal and Andaman and Nicobar Islands (2018–19). Central Groundwater Board.

    Google Scholar 

  • CGWB Report. (2021). Aquifer mapping and management of groundwater resources. Dakshin Dinajpur. Central Groundwater Board.

    Google Scholar 

  • Chadha, D. (1999). A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeology Journal, 7, 431–439. https://doi.org/10.1007/s100400050216

    Article  ADS  Google Scholar 

  • Choi, A. L., Sun, G., Zhang, Y., & Grandjean, P. (2012). Developmental fluoride neurotoxicity: A systematic review and meta-analysis. Environmental Health Perspectives, 120(10), 1362–1368. https://doi.org/10.1289/ehp.1104912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choubisa, S. L., Choubisa, D., & Choubisa, A. (2023). Fluoride contamination of groundwater and its threat to health of villagers and their domestic animals and agriculture crops in rural Rajasthan, India. Environmental Geochemistry and Health, 45, 607–628. https://doi.org/10.1007/s10653-022-01267-z

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury, A., Adak, M. K., Mukherjee, A., Dhak, P., Khatun, J., & Dhak, D. (2019). A critical review on geochemical and geological aspects of fluoride belts, fluorosis and natural materials and other sources for alternatives to fluoride exposure. Journal of Hydrology, 574, 333–359. https://doi.org/10.1016/j.jhydrol.2019.04.033

    Article  ADS  CAS  Google Scholar 

  • Chowdhury, P., Mukhopadhyay, B. P., Nayak, S., & Bera, A. (2022). Hydro-chemical characterization of groundwater and evaluation of health risk assessment for fluoride contamination areas in the eastern blocks of Purulia district, India. Environment, Development and Sustainability, 24, 11320–11347. https://doi.org/10.1007/s10668-021-01911-1

    Article  Google Scholar 

  • Das, S. K., & Das, R. K. (2020). Investigation on fluoride concentration in ground water by hydrochemical pathway. International Journal of Environmental Analytical Chemistry, 101(15), 2551–2567. https://doi.org/10.1080/03067319.2019.1694672

    Article  CAS  Google Scholar 

  • Das, S. K., Pramanik, A. K., Das, R. K., & Chatterjee, A. (2022b). An evolving perspective on the fluoride mitigation techniques. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-022-04576-z

    Article  PubMed  Google Scholar 

  • Das, S. K., Pramanik, A. K., Majumdar, D., Hossain, M., Ghosh, T., & Chatterjee, A. (2022a). Hydrochemical investigation of groundwater and probabilistic health risk assessment from fluoride and iron intake in a ferruginous Barind tract. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2022.2140044

    Article  Google Scholar 

  • de Graaf, I. E. M., Gleeson, T., van Beek, L. P. H., Sutanudjaja, E. H., & Bierkens, M. F. P. (2019). Environmental flow limits to global groundwater pumping. Nature, 574, 90–94. https://doi.org/10.1038/s41586-019-1594-4

    Article  ADS  CAS  PubMed  Google Scholar 

  • Dehbandi, R., Moore, F., & Keshavarzi. (2018). Geochemical sources, hydrogeochemical behavior and health risk assessment of fluoride in an endemic fluorosis area, central Iran. Chemosphere, 19, 763–776. https://doi.org/10.1016/j.Chemosphere.2017.11.021

    Article  ADS  Google Scholar 

  • Dharmaratne, R. (2019). Exploring the role of excess fluoride in chronic kidney disease: A review. Human and Experimental Toxicology, 38(3), 269–279. https://doi.org/10.1177/0960327118814161

    Article  CAS  PubMed  Google Scholar 

  • Ding, C., Ma, Y., Li, X., Zhang, T., & Wang, X. (2018). Determination and validation of soil thresholds for cadmium based on food quality standard and health risk assessment. Science of the Total Environment, 619–629, 700–706. https://doi.org/10.1016/j.scitotenv.2017.11.137

    Article  ADS  CAS  Google Scholar 

  • Doneen, L. D. (1964). Notes on water quality in agriculture. University of California.

    Google Scholar 

  • Everett, E. T. (2011). Fluoride’s effects on the formation of teeth and bones, and the influence of genetics. Journal of Dental Research, 90(5), 552–560. https://doi.org/10.1177/0022034510384626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fordyce, F. M., Vrana, K., Zhovinsky, E., Povoroznuk, V., Toth, G., Hope, B. C., Iljinsky, U., & Baker, J. (2007). A health risk assessment for fluoride in Central Europe. Environmental Geochemistry and Health, 29, 83–102. https://doi.org/10.1007/s10653-006-9076-7

    Article  CAS  PubMed  Google Scholar 

  • Gaikwad, S., Gaikwad, S., Meshram, D., Wagh, V., Kandekar, A., & Kadam, A. (2020). Geochemical mobility of ions in groundwater from the tropical western coast of Maharashtra, India: Implication to groundwater quality. Environment Development and Sustainability, 22, 2591–2624. https://doi.org/10.1007/s10668-019-00312-9

    Article  Google Scholar 

  • Galagan, D. J., & Vermillion, J. R. (1957). Determining optimum fluoride concentrations. Public Health Reports (1896-1970), 72(6), 491–493. https://doi.org/10.2307/4589807

    Article  CAS  Google Scholar 

  • Ghaderpoori, M., Paydar, M., Zarei, A., Alidadi, H., Najafpoor, A. A., Gohary, A. H., & Shams, M. (2019). Health risk assessment of fluoride in water distribution network of Mashhad, Iran. Human and Ecological Risk Assessment, 25(4), 851–862. https://doi.org/10.1080/10807039.2018.1453297

    Article  CAS  Google Scholar 

  • Ghosh, G. C., Khan, M. J. H., Chakraborty, T. K., Zaman, S., Enamul Kabir, A. H. M., & Tanaka, H. (2020). Human health risk assessment of elevated and variable iron and manganese intake with arsenic-safe groundwater in Jashore, Bangladesh. Scientific Reports, 10, 5206. https://doi.org/10.1038/s41598-020-62187-5

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain, M., & Patra, P. K. (2020). Hydrogeochemical characterisation and health hazards of fluoride enriched groundwater in diverse aquifer types. Environmental Pollution, 258, 113646. https://doi.org/10.1016/j.envpol.2019.113646

    Article  CAS  PubMed  Google Scholar 

  • Hossain, M., Patra, P. K., Begum, S. N., & Chowdhury, H. R. (2020). Spatial and sensitivity analysis of integrated groundwater quality index towards irrigational suitability investigation. Applied Geochemistry, 123, 104782. https://doi.org/10.1016/j.apgeochem.2020.104782

    Article  CAS  Google Scholar 

  • Huang, D., Liu, M., Zhang, J., Wang, Y. (2010). Research on risk assessment based on Monte Carlo simulation and dose-response multistage model. In 3rd International conference on biomedical engineering and informatics, Yantai, China, pp. 1245–1250. https://doi.org/10.1109/BMEI.2010.5639276

  • Indermitte, E., Saava, A., & Karro, E. (2014). Reducing exposure to high fluoride drinking water in Estonia—A countrywide study. International Journal of Environmental Research and Public Health, 11, 3132–3142. https://doi.org/10.3390/ijerph110303132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Information system database; Philadelphia PA; Washington, USA. https://www.epa.

  • Jannat, J. N., Khan, M. S. I., Islam, H. M. T., Islam Md, S., Khan, R., Siddique, M. A. B., Varol, M., Tokatli, C., Pal, S. C., Islam, A., Idris, A. M., Malafaia, G., & Islam, A. R. M. T. (2022). Hydro-chemical assessment of fluoride and nitrate in groundwater from east and west coasts of Bangladesh and India. Journal of Cleaner Production, 372, 133675. https://doi.org/10.1016/j.jclepro.2022.133675

    Article  CAS  Google Scholar 

  • Jaydhar, A. K., Pal, S. C., Saha, A., Islam, A. R. M. T., & Ruidas, D. (2022). Hydrogeochemical evaluation and corresponding health risk from elevated arsenic and fluoride contamination in recurrent coastal multi-aquifers of eastern India. Journal of Cleaner Production, 369, 133150. https://doi.org/10.1016/j.jclepro.2022.133150

    Article  CAS  Google Scholar 

  • Jha, S. K., Mishra, V. K., Sharma, D. K., & Damodaran, T. (2011). Fluoride in the environment and its metabolism in humans. Reviews in Environmental Contamination and Toxicology, 211, 121–412. https://doi.org/10.1007/978-1-4419-8011-3_4

    Article  CAS  Google Scholar 

  • Kaur, L., Rishi, M. S., Sharma, S., Sharma, B., Lata, R., & Singh, G. (2019). Hydrogeochemical characterization of groundwater in alluvial plains of river Yamuna in Northern India: An insight of controlling processes. Journal of King Saud University- Science, 31(4), 1245–1253. https://doi.org/10.1016/j.jksus.2019.01.005

    Article  Google Scholar 

  • Kaur, L., Rishi, M. S., & Siddiqui, A. U. (2020a). Deterministic and probabilistic health risk assessment techniques to evaluate non-carcinogenic human health risk (NHHR) due to fluoride and nitrate in groundwater of Panipat, Haryana. India. Environmental Pollution, 259, 113711. https://doi.org/10.1016/j.envpol.2019.113711

    Article  CAS  PubMed  Google Scholar 

  • Kaur, L., Rishi, M. S., & Siddiqui, A. Q. (2020b). Deterministic and probabilistic health risk assessment techniques to evaluate non-carcinogenic human health risk (NHHR) due to fluoride and nitrate in groundwater of Panipat, Haryana, India. Environmental Pollution. https://doi.org/10.1016/j.envpol.2019.113711

    Article  PubMed  Google Scholar 

  • Kelly, W. P. (1940). Permissible composition and concentration of irrigation waters. Proceedings of ASCE, 66, 607–613.

    Google Scholar 

  • Kim, H. R., Yu, S., Oh, J., Kim, K. H., Lee, J. H., Moniruzzaman, M., Kim, H. K., & Yun, S. T. (2019). Nitrate contamination and subsequent hydrogeochemical processes of shallow groundwater in agro-livestock farming districts in South Korea. Agriculture, Ecosystems and Environment, 273, 50–61. https://doi.org/10.1016/j.agee.2018.12.010

    Article  CAS  Google Scholar 

  • Kumar, M., & Puri, A. (2012). A review of permissible limits of drinking water. Indian Journal of Occupational and Environmental Medicine, 16(1), 40–44. https://doi.org/10.4103/0019-5278.99696

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, P., Tian, R., Xue, C., & Wu, J. (2017). Progress, opportunities and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China. Environmental Science and Pollutyion Research, 24, 13224–13234. https://doi.org/10.1007/s11356-017-8753-7

    Article  Google Scholar 

  • Loh, A., & Wolff, M. (2020). Multivariate analysis of photoacoustic spectra for the detection of short-chained hydrocarbon isotopologues. Molecules, 25, 2266. https://doi.org/10.3390/molecules25092266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madhnure, P., Sirsikar, D. Y., Tiwari, A. N., Ranjan, B., & Malpe, D. B. (2007). Occurrence of fluoride in the groundwaters of Pandharkawada area, Yavatmal district, Maharashtra, India. Current Science, 92, 675–679.

    CAS  Google Scholar 

  • Magesh, N. S., Krishnakumar, S., Chandrasekar, N., & Soundranayagam, J. P. (2013). Groundwater quality assessment using WQI and GIS techniques, Dindigul district, Tamil Nadu, India. Arabian Journal of Geosciences, 6, 4179–4189. https://doi.org/10.1007/s12517-012-0673-8

    Article  CAS  Google Scholar 

  • Matthess, G. (1982). The properties of groundwater (p. 406). Wiley.

    Google Scholar 

  • Merrill, R. D., Labrique, A. B., Shamim, A. A., Schulze, K., Christian, P., Merrill, R. K., & West, K. P., Jr. (2010). Elevated and variable groundwater iron in rural northwestern Bangladesh. Journal of Water and Health, 8, 818–825. https://doi.org/10.2166/wh.2010.144

    Article  CAS  PubMed  Google Scholar 

  • Meyback, M. (1987). Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287, 401–428.

    Article  ADS  Google Scholar 

  • Moniruzzaman, M., Lee, J. H., Jung, K. M., Kwon, J. S., Kim, K. H., & Yun, S. T. (2018). Lithologic control of the hydrochemistry of a point-bar alluvial aquifer at the low reach of the Nakdong river, South Korea: Implications for the evaluation of riverbank filtration potential. Water, 10(12), 1763. https://doi.org/10.3390/w10121763

    Article  CAS  Google Scholar 

  • Mukherjee, I., & Singh, U. K. (2020). Fluoride abundance and their release mechanisms in groundwater along with associated human health risks in a geologically heterogeneous semi-arid region of east India. Microchemistry Journal, 152, 104304. https://doi.org/10.1016/j.microc.2019.104304

    Article  CAS  Google Scholar 

  • Muller, W., Heath, R., & Villet, M. (1998). Finding the optimum: fluoridation of potable water in South Africa. Water SA, 24(1), 21–28.

    CAS  Google Scholar 

  • Nakazawa, K., Nagafuchi, O., Okano, K., Osaka, K., Hamabata, E., Tsogtbaatar, J., & Choijil, J. (2016). Non-carcinogenic risk assessment of groundwater in South Gobi, Mongolia. Journal of Water and Health, 14(6), 1009–1018. https://doi.org/10.2166/wh.2016.035

    Article  PubMed  Google Scholar 

  • Nakazawa, K., Nagafuchi, O., Otede, U., Chen, J. Q., Kanefuji, K., & Shinozuka, K. (2020). Risk assessment of fluoride and arsenic in groundwater and a scenario analysis for reducing exposure in Inner Mongolia. RSC Advances, 10, 18296. https://doi.org/10.1039/D0RA00435A

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Paliwal, K. V. (1972). Irrigation with saline water. Monogram No. 2, new series (p. 198). IARI.

    Google Scholar 

  • Pan, J. N., Li, C. I., & Lu, M. Z. (2019). Detecting the process changes for multivariate nonlinear profile data. Quality and Reliability Engineering International, 35(6), 1890–1910. https://doi.org/10.1002/qre.2482

    Article  Google Scholar 

  • Paul, R., Brindha, K., Gowrisankar, G., Tan, M. L., & Singh, M. K. (2019). Identification of hydrogeochemical processes controlling groundwater quality in Tripura, Northeast India using evaluation indices, GIS, and multivariate statistical methods. Environmental Earth Science, 78, 470. https://doi.org/10.1007/s12665-019-8479-6

    Article  ADS  CAS  Google Scholar 

  • Peng, Q., Nunes, L. M., Greenfiled, B. K., Dang, F., & Zhong, H. (2016). Are Chinese consumers at risk due to exposure to metals in crayfish? A bioaccessibility-adjusted probabilistic risk assessment. Environment International, 88, 261–268. https://doi.org/10.1016/j.envint.2015.12.035

    Article  CAS  PubMed  Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Eos, Transactions, American Geophysical Union, 25(6), 914–928. https://doi.org/10.1029/TR025i006p00914

    Article  ADS  Google Scholar 

  • Podgorski, J., Araya, D., & Berg, M. (2022). Geogenic manganese and iron in groundwater of Southeast Asia and Bangladesh–Machine learning spatial prediction modeling and comparison with arsenic. Science of the Total Environment, 833, 155131. https://doi.org/10.1016/j.scitotenv.2022.155131

    Article  ADS  CAS  PubMed  Google Scholar 

  • Postawa, A., Hayes, C., Criscuoli, A., Macedonio, F., Angelakis, A. N., Rose, J. B., Maier, A., & McAvoy, D. C. (2013). Best practice guide on the control of iron and manganese in water supply. IWA publishing.

    Book  Google Scholar 

  • POWER data access viewer prediction of worldwide energy resource (PDAVPWER). (2022). https://power.larc.nasa.gov/data-access-viewer/. Visited on 18.11.22

  • Pramanik, A. K., Das, S. K., & Chatterjee, A. (2021). A study on groundwater quality based on major ion chemistry of Jharkhand state in India: A review. Oriental Journal of Chemistry. https://doi.org/10.13005/ojc/370425

    Article  Google Scholar 

  • Pramanik, A. K., Majumdar, D., & Chatterjee, A. (2020). Evaluation of hydrochemical facies and suitability of water in Tilaiya dam reservoir of the Jharkhand state in India. Analytical Chemistry Letters, 10(5), 684–702. https://doi.org/10.1080/22297928.2020.1853604

    Article  CAS  Google Scholar 

  • Pramanik, A. K., Majumdar, D., & Chatterjee, A. (2022). Groundwater hydrochemistry and consumption patterns in Chandwara community development block of Jharkhand state in India. Applied Water Science. https://doi.org/10.1007/s13201-022-01587-6

    Article  Google Scholar 

  • Qasemi, M., Afsharnia, M., Zarei, A., Farhang, M., & Allahdadi, M. (2019). Non-carcinogenic risk assessment to human health due to intake of fluoride in the groundwater in rural areas of Gonabad and Bajestan, Iran: A case study. Human and Ecological Risk Assessment, 25(5), 1222–1233. https://doi.org/10.1080/10807039.2018.1461553

    Article  CAS  Google Scholar 

  • Ramakrishna. (1998). Groundwater handbook. Kalyani Publishers.

    Google Scholar 

  • Ramamohana Rao, N. V., Suryaprakasa Rao, K., & Schuiling, R. D. (1993). Fluorine distribution in waters of Nalgonda district, Andhra Pradesh, India. Environmental Geology, 21, 84–89. https://doi.org/10.1007/BF00775055

    Article  ADS  Google Scholar 

  • Razmkhah, H., Abrishamchi, A., & Torkian, A. (2010). Evaluation of spatial and temporal variation in water quality by pattern recognition techniques: A case study on Jajrood River (Tehran, Iran). Journal of Environmental Management, 91(4), 852–860. https://doi.org/10.1016/j.jenvman.2009.11.001

    Article  CAS  PubMed  Google Scholar 

  • Ruidas, D., Pal, S. C., Chowdhuri, I., Saha, A., Biswas, T., Islam, A. R. M. T., & Shit, M. (2023). Hydrogeochemical evaluation for human health risk assessment from contamination of coastal groundwater aquifers of Indo-Bangladesh Ramsar site. Journal of Cleaner Production, 399, 136647. https://doi.org/10.1016/j.jclepro.2023.136647

    Article  CAS  Google Scholar 

  • Rusydi, A. F., Onodera, S. I., Saito, M., Loka, S., Maria, R., Ridwansyah, I., & Delinom, R. M. (2021). Vulnerability of groundwater to iron and manganese contamination in the coastal alluvial plain of a developing Indonesian city. SN Applied Science. https://doi.org/10.1007/s42452-021-04385-y

    Article  Google Scholar 

  • Sampson, A., Owusu-Ansah, E. D. J., Abaidoo, R. C., Ayi, I., & Robertson-Mills, F. C. (2017). Quantitative microbial risk assessment of farmers’ exposure to Cryptosporidium spp. in irrigation water. Microbial Risk Analysis, 6, 1–8. https://doi.org/10.1016/j.mran.2017.06.001

    Article  Google Scholar 

  • Sarkar, M., & Pal, S. C. (2021). Human health hazard assessment for high groundwater arsenic and fluoride intact in Malda district. Eastern India. Groundwater for Sustainable Development, 13, 100565. https://doi.org/10.1016/j.gsd.2021.100565

    Article  Google Scholar 

  • Shivarajashankara, Y. M., Shivashankara, A. R., Bhat, P. G., & Rao, S. H. (2002). Brain lipid peroxidation and antioxidant systems of young rats in chronic fluoride intoxication. Fluoride, 35, 197–203.

    CAS  Google Scholar 

  • Sikdar, P. K., & Chakraborty, S. (2008). Genesis of arsenic in groundwater of North Bengal plain using PCA: A case study of English bazar block, Malda district, West Bengal, India. Hydrological Processes, 22, 1796–1809. https://doi.org/10.1002/hyp.6742

    Article  ADS  CAS  Google Scholar 

  • Singh, P., Rishi, M. S., & Kaur, L. (2022). Multi-parametric analysis of groundwater quality to assess human health risk and hydrogeochemical processes in an agriculturally intensive alluvial aquifer of Northwest India. International Journal of Environmental and Analytical Chemistry. https://doi.org/10.1080/03067319.2022.2064750

    Article  Google Scholar 

  • Singhal, B. B. S., & Gupta, R. P. (1999). Applied hydrogeology of fractured rocks. Kluwer Academic Publishers.

    Book  Google Scholar 

  • Sreedevi, P., Ahmed, S., Made, B., Ledoux, E., & Gandolfi, J. M. (2006). Association of hydrogeological factors in temporal variations of fluoride concentration in a crystalline aquifer in India. Environmental Geology, 50, 1–11. https://doi.org/10.1007/s00254-005-0167-z

    Article  ADS  CAS  Google Scholar 

  • Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry (p. 1022p). Wiley.

    Google Scholar 

  • Subba Rao, N. (2014). Spatial control of groundwater contamination, using principal component analysis. Journal of Earth System Science, 123(4), 715–728.

    Article  ADS  Google Scholar 

  • Subba Rao, N., Saroja, N. I., & Suryanarayana, K. (2005). Groundwater quality in a coastal area—A case study from Andhra Pradesh, India. Environmental Geology, 48, 534–550.

    Google Scholar 

  • Subba Rao, N., Surya Rao, P., Readdy, V. G., Nagamani, M., Vidyasagar, G., & Satyanarayana, N. L. V. V. (2012). Chemical characteristics of groundwater and assessment of groundwater quality in Varaha River basin, Visakhapatnam district, Andhra Pradesh, India. Environmental Monitoring and Assessment, 184, 5189–5214. https://doi.org/10.1007/s10661-011-2333-y

    Article  CAS  PubMed  Google Scholar 

  • Susheela, A. K. (2011). Treatise on fluorosis. International Society for Fluor Ide Research, 34(3), 181–183.

    Google Scholar 

  • Talukdar, T., & Talukdar, D. (2013). Ethno-medicinal uses of plants by tribal communities in Hili block of Dakshin Dinajpur district, West Bengal. Indian Journal of Natural Products and Resources, 4(1), 110–118.

    Google Scholar 

  • Tashauoei, H. R., Mahdavi, M., Mahvi, A. H., & Fatehizadeh, A. (2023). Dataset of fluoride concentration and health risk assessment in drinking water in the Saveh city of Markazi province, Iran. Data in Brief, 50, 109466. https://doi.org/10.1016/j.dib.2023.109466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todd, D. K. (1980). Groundwater hydrology (p. 535). Wiley.

    Google Scholar 

  • Tokatlı, C., Islam, A. R. M. T., Onur, S. G., Ustaoğlu, F., Islam, M. S., & Dindar, M. B. (2022). A pioneering study on health risk assessment of fluoride in drinking water in Thrace region of northwest Türkiye. Groundwater for Sustainable Development, 19, 100836. https://doi.org/10.1016/j.gsd.2022.100836

    Article  Google Scholar 

  • Tokatlı, C., Onur, S. G., Dindar, M. B., Malafaia, G., Islam, A. R. M. T., & Muhammad, S. (2023). Spatial-temporal variability and probabilistic health risk assessment of fluoride from lentic ecosystem, Türkiye. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2023.2198645

    Article  Google Scholar 

  • Turan, M. A., Elkarim, A. H. A., Taban, N., & Taban, S. (2009). Effect of salt stress on growth, stomatal resistance, proline and chlorophyll concentrations on maize plant. African Journal of Agricultural Research, 4, 893–897.

    Google Scholar 

  • UNESCO. (2012). World’s groundwater resources are suffering from poor governance. UNESCO Publishing.

    Google Scholar 

  • USEPA. (2010). Risk assessment guidance for superfund. In Human health evaluation manual, development of risk-based preliminary remediation goals (Part B), vol. 1 . Washington, DC, USA.

  • USEPA. (2017). United States Environmental Protection Agency Integrated Risk. https://www.epa.gov/risk/humanhealth-risk-assessment.

  • USEPA. (2023). Regional screening levels (RSLs) – Equations May 2023. https://semspub.epa.gov/work/HQ/404077.pdf.

  • WHO. (2011). Guidelines for drinking-water quality (4th ed.). World Health Organization.

    Google Scholar 

  • Wilcox, L. V. (1955). Classification and use of irrigation water. US Department of Agriculture.

    Google Scholar 

  • World Water Quality Alliance. (2021). Assessing groundwater quality: A global perspective: importance, methods and potential data sources. A report by the friends of groundwater in the World water quality alliance. Information document annex for display at the 5th session of the United Nations Environment Assembly, Nairobi, 2021.

  • Zaman, M., Shahid, S. A., Heng, L. (2018). Irrigation water quality. In Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer Open. https://doi.org/10.1007/978-3-319-96190-3_5

  • Zareh, M. M., El-Sayed, A. S., & El-Hady, D. M. (2022). Biosorption removal of iron from water by Aspergillus Niger. Npj Clean Water. https://doi.org/10.1038/s41545-022-00201-1

    Article  Google Scholar 

  • Zektser, I., & Everett, L. (2004). Groundwaters of the world and their use. UNESCO Publishing.

    Google Scholar 

  • Zhang, S., Han, Y., Peng, J., Chen, Y., Jhan, L., & Li, J. (2023). Human health risk assessment for contaminated sites: A retrospective review. Environment International, 171, 107700. https://doi.org/10.1016/j.envint.2022.107700

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Raiganj University and Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI) for providing necessary support.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SKD, JG and AKP performed the experiments, analyzed the results and prepared the manuscript. MH did Monte Carlo simulation and consequent interpretations. DM did all statistical calculations, data interpretation and had major contribution in preparation of the manuscript. AC conceived the present idea, supervised the work, analyzed the results and prepared the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Abhik Chatterjee.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

Research did not involve animals, their data or biological material.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Supplementary file2 (PPTX 144 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S.K., Ghosh, J., Pramanik, A.K. et al. Evaluation of non-cancer risk owing to groundwater fluoride and iron in a semi-arid region near the Indo-Bangladesh international frontier. Environ Geochem Health 46, 33 (2024). https://doi.org/10.1007/s10653-023-01824-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-023-01824-0

Keywords

Navigation