Skip to main content

Fluoride in the Environment and Its Metabolism in Humans

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 211

Abstract

Fluorine is widely dispersed in nature and is estimated to be the 13th most abundant element on our planet (Mason and Moore 1982). It is the most electronegative of all chemical elements, and as a result, it never exists in elemental form, but rather combines with other elements; fluoride compounds represent about 0.06–0.09% of the content of the earth’s crust (Wedephol 1974). Fluoride is distributed universally throughout soils, plants, and animals, and is assumed to be an essential element in animals, including humans. Fluoride has an important role in bone mineralization and formation of dental enamels. Fluoride, when consumed in inadequate quantities (less than 0.5 ppm), causes health problems such as dental caries, lack of formation of dental enamel, and reduced bone mineralization, especially among children (WHO 1996). In contrast, when fluoride is consumed in excess (more than 1 ppm), health problems may result, which equally affect the young and old (WHO 1996). At higher fluoride concentrations, metabolic processes are affected in humans, and overexposed individuals may suffer from skeletal or dental fluorosis, non-skeletal manifestations, or combinations of these maladies (Susheela et al. 1993). The incidence and severity of fluorosis depends upon the fluoride concentration in air, soil or water, and the degree of exposure to these levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aoba T, Fejerskov O (2002) Dental fluorosis: chemistry and biology. Crit Rev Oral Biol Med 13(2):155–170

    Article  CAS  Google Scholar 

  • Apambire WB, Boyle DR, Michel FA (1997) Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper regions of Ghana. Environ Geol 33(1):13–24

    Article  CAS  Google Scholar 

  • ATSDR (2003) Hydrogen fluoride and fluorine, Report on toxicological profile for fluorides. US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry

    Google Scholar 

  • Bardsen A, Bjorvatn K, Selvig KA (1996) Variability of fluoride content in subsurface water reservoirs. Acta Odontol Scand 54(6):343–347. doi:10.3109/00016359609003549

    Article  CAS  Google Scholar 

  • Barrow NJ, Ellis AS (1986) Testing a mechanistic model. III The effect of pH on fluoride retention by a soil. J Soil Sci 37:287–293

    Article  CAS  Google Scholar 

  • Bieliyakova TM (1977) Fluorine in soils and plants as related to endemic fluorosis. Pochvovedenie 8:55

    Google Scholar 

  • BIS (1991) Indian standard specification for drinking water. IS: 10500, Bureau of Indian Standards, New Delhi, pp 2–4

    Google Scholar 

  • Bowen HJM (1966) Trace elements in biochemistry. Academic, London, 241 p

    Google Scholar 

  • Bower CA, Hatcher JJ (1967) Adsorption of fluorine by soils and minerals. Soil Sci 103:151–154

    Article  CAS  Google Scholar 

  • Brewer RF (1966) Fluorine. In: Chapman HD (ed) Diagnostic criteria for plants and soils. University of California, Los Angeles, CA, pp 180–196

    Google Scholar 

  • Cao J, Zhao Y, Liu J (1997) Brick tea consumption as the cause of dental fluorosis among children from Mongol, Kazak and Yugu populations in China. Food Chem Toxicol 35(8):827–833

    Article  CAS  Google Scholar 

  • Chae GT, Yun ST, Mayer B, Kim KH, Kim SY, Kwon JS, Kim K, Koh YK (2007) Fluorine geochemistry in bedrock groundwater of South Korea. Sci Total Environ 385(1–3):272–283. doi: 10.1016/j.scitotenv.2007.06.038

    CAS  Google Scholar 

  • Chhabra R, Singh A, Abrol IP (1980) Fluorine in sodic soils. Soil Sci Soc Am J 44:33–36

    Article  CAS  Google Scholar 

  • Choubisa SL, Sompura K, Bhatt SK, Choubisa DK, Pandya H, Joshi SC, Choubisa L (1996) Prevalence of fluorosis in some villages of Dungarpur district of Rajasthan. Ind J Environ Health 38:119–126

    CAS  Google Scholar 

  • Cronin SJ, Manoharan V, Hedley MJ, Loganathan P (2000) Fluoride: a review of its fate, bioavailability, and risks of fluorosis in grazed-pasture systems in New Zealand. N Z J Agri Res 43:295–321

    Article  CAS  Google Scholar 

  • Czarnowski W, Wrzesniowska K, Krechniak J (1996) Fluoride in drinking water and human urine in Northern and Central Poland. Sci Total Environ 191:177–184

    Article  CAS  Google Scholar 

  • Das DK, Burman GK, Kidwai AL (1981) Chemical composition of monsoon rainwater over Bhopal, Madhya Pradesh during 1977 and 1978. Mausam 32:221–228

    Google Scholar 

  • Diesendorf M, Diesendorf A (1997) Suppression by medical journals of a warning about overdosing formula-fed infants with fluoride. Account Res 5:225–237

    Google Scholar 

  • Dissanayake CB (1991) The fluoride problem in the groundwater of Sri Lanka – environmental management and health. Int J Environ Stud 19:195–203

    Article  Google Scholar 

  • Edmunds WM, Smedley PL (2005) Fluoride in natural waters. In: Selinus O (ed) Essentials of medical geology. Elsevier, Burlington, MA, pp 301–329

    Google Scholar 

  • Ekstrand J (1987) Pharmacokinetic aspects of topical fluorides. J Dent Res 66:1061–1065

    Article  CAS  Google Scholar 

  • Ekstrand J, Ehrnebo M (1979) Influence of milk products on fluoride bioavailability in man. Eur J Clin Pharmacol 16:211–215

    Article  CAS  Google Scholar 

  • Ekstrand J, Fomon SJ, Ziegler EE (1994) Fluoride pharmacokinetics in infancy. Pediatr Res 35(2):157–163

    Article  CAS  Google Scholar 

  • Ekstrand J, Spak CJ, Flach J (1984) Distribution of fluoride to human breast milk following intake of high doses of fluoride. Caries Res 18:93–95

    Article  CAS  Google Scholar 

  • Fomon SJ, Ekstrand J (1999) Fluoride intake by infants. J Pub Health Dent 59(4):229–234

    Article  CAS  Google Scholar 

  • Fuge R (1988) Sources of halogens in the environment, influences on human and animal health. Environ Geochem Health 10(20):51–61

    Article  CAS  Google Scholar 

  • Fuge R, Andrews MJ (1988) Fluorine in U.K. environment. Environ Geochem Health 10(3–4):96–104

    Article  CAS  Google Scholar 

  • Fung KF, Zhang ZQ, Wong JWC (1999) Fluoride contents in tea and soil from tea plantations and the release of fluoride into tea liquor during infusion. Environ Pollut 104:197–205

    Article  CAS  Google Scholar 

  • Gedalia I (1970) Distribution in placental and factors. Fluorides and human health, vol 59. World Health Organization Monographs Series, Geneva, pp 12–134

    Google Scholar 

  • Gilpin L, Johnson AH (1980) Fluorine in agricultural soils of Southern Pennsylvania. Soil Sci Soc Am J 44:255–258

    Article  CAS  Google Scholar 

  • Gupta MK, Singh V, Rajwanshi P, Agarwal M, Rai K, Srivastava S et al (1999) Groundwater quality assessment of Tehsil Kheragarh, Agra (India) with special reference to fluoride. Environ Monit Assess 59(3):275–285

    Article  CAS  Google Scholar 

  • Haidouti C (1991) Fluoride distribution in soils in the vicinity of a point emission source in Greece. Geoderma 49:129–138

    Article  CAS  Google Scholar 

  • Hamilton IR (1990) Biochemical effects of fluoride on oral bacteria. J Dent Res 69:660–667

    CAS  Google Scholar 

  • Handa BK (1975) Geochemistry and genesis of fluoride containing ground waters in India. Ground water 13(3):275–281

    Article  CAS  Google Scholar 

  • Hem JD (1985) The study and interpretation of the chemical characteristics of natural water, 3rd edn. U.S. Geological Survey Water-Supply, Paper 2254

    Google Scholar 

  • Hudak PF, Sanmanee S (2003) Spatial patterns of nitrate, chloride, sulfate, and fluoride concentrations in the woodbine aquifer of north-central Texas. Environ Monit Assess 82(3):311–320. doi:10.1023/A:1021946402095

    Article  CAS  Google Scholar 

  • Hyndman DW (1985) Petrology of igneous rocks, 2nd edn. McGraw-Hill, New York, NY

    Google Scholar 

  • Jacobsen SJ, Goldberg J, Cooper C (1992) The association between water fluoridation and hip fracture among white women and men aged 65 years and older. Ann Epidemiol 2:617–626

    Article  CAS  Google Scholar 

  • Jha SK, Nayak AK, Sharma YK (2009) Fluoride occurrence and assessment of exposure dose of fluoride in shallow aquifers of Makur, Unnao District Uttar Pradesh, India. Environ Monit Assess 156:561–566

    Article  CAS  Google Scholar 

  • Jha SK, Nayak AK, Sharma YK, Mishra VK, Sharma DK (2008) Fluoride accumulation in soil and vegetation in the vicinity of brick fields. Bull Environ Contam Toxicol 80:369–373

    Article  CAS  Google Scholar 

  • Jolly SS, Singh BM, Mathur OC, Malhotra KC (1968) Epidemiological, clinical and biochemical study of endemic dental and skeletal fluorosis in Punjab. B Med J 4:427–429

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (1984) Elements of group VII. In: Trace elements in soils and plants. CRC, Boca Raton, FL, pp 473–482

    Google Scholar 

  • Kaminsky L, Mahony M, Leach J (1990) Fluoride: benefits and risks of exposure. Crit Rev Oral Biol Med 1:261–281

    CAS  Google Scholar 

  • Keerthisinghe G, McLaughlin M.J, Freney JR (1991) Use of gypsum, phosphogypsum and fluoride to ameliorate subsurface acidity in a pasture soil. In: Wright, RJ, Aligar VC, Murrmann RP (ed) Plant soil interactions at low pH. Dordrecht. pp 509–517

    Google Scholar 

  • Keller EA (1979) Environmental geology. Charles & Merril, Columbus, OH, p 548

    Google Scholar 

  • Kim K, Jeong GY (2005) Factors influencing natural occurrence of fluoride-rich ground waters: a case study in the southeastern part of the Korean Peninsula. Chemos 58(10):1399–1408

    Article  CAS  Google Scholar 

  • Kirk-Othmer (1980) Encyclopedia of chemical technology, vol. 10, 3rd edn. Wiley, New York, NY

    Google Scholar 

  • Kloos H, Tekle-Haimanot R. Kloos H, Zein AH (eds) (1993) Fluorosis. The ecology of health and disease in Ethiopia. West View Press, Boulder, CO, pp 445–541

    Google Scholar 

  • Krishnamachari KAVR, Krishnaswamy K (1973) Genu Valgum and osteoporosis in an area of endemic fluorosis. Lancet 20:877–879

    Article  Google Scholar 

  • Kudzin YK, Pashova VT (1970) Fluorine content of soils and plants after prolonged application of fertilisers. Soils Fertil 33:451

    Google Scholar 

  • Lahermo P, Ilmasti M, Juntunen R, Taka M (1990) The geochemical atlas of Finland. Part 1: the hydro-geochemical mapping of Finnish groundwater. Geological Survey of Finland, Espoo

    Google Scholar 

  • Larsen S, Widdowson AE (1971) Soil fluorine. J Soil Sci 22(2):210–221

    Article  CAS  Google Scholar 

  • Li Y, Liang CK, Slemenda CW, Ji R, Sun S, Cao J, Emsley CL, Ma F, Wu Y, Ying, P, Zhang Y, Gao S, Zhang W, Katz BP, Niu S, Cao S, Johnston Jr CC (2001) Effect of long term exposure to fluoride in drinking water on risks of bone fractures. J Bone Miner Res 16(5): 932–939

    Article  CAS  Google Scholar 

  • Mambali SS (1982) Necessity and efforts made to map the occurrence of fluoride within the country, Tanzania Mainland. A report the workshop on domestic water health standards with emphasis on fluoride Arusha, Tanzania Ministry of Water and Energy. pp 32–43

    Google Scholar 

  • Manoharan V (1997) Impacts of phosphate fertilizer application on soil acidity and aluminium phyto-toxicity. Unpublished PhD thesis, Massey University, Palmerston North, New Zealand

    Google Scholar 

  • Manoharan V, Loganathan P, Parfltt RL, Tillman RW (1996) Changes in soil solution composition and aluminium speciation under legume-based pastures in response to long-term phosphate fertiliser applications. Aust J Soil Res 34:985–998

    Article  CAS  Google Scholar 

  • Mason B, Moore C (1982) Principles of geochemistry. Wiley, New York, NY, p 350

    Google Scholar 

  • McIvor M (1990) Acute fluoride toxicity: patho-physiology and management. Drug Saf 5:79–85

    Article  CAS  Google Scholar 

  • McLaughlin MJ, Simpson PG, Fleming N, Stevens DP, Cozens G, Smart MK (1997) Effect of fertiliser type on cadmium and fluorine concentrations in clover herbage. Aust J Experi Agri 37:1019–1026

    Article  CAS  Google Scholar 

  • McLaughlin MJ, Tiller KG, Naidu R, Stevens DP (1996) Review: the behavior and environmental impact of contaminants in fertilisers. Aust J Soil Res 34:1–54

    Article  CAS  Google Scholar 

  • Mekonen A, Kumar P, Kumar A (2001) Integrated biological and physicochemical treatment process for nitrate and fluoride removal. Water Res 35(13):3127–3136

    Article  CAS  Google Scholar 

  • Mjengera H, Mkongo G (2003) appropriate defluoridation technology for use in fluorotic areas in Tanzania. Phys Chem Earth 28:1097–1104

    Google Scholar 

  • Neuhold JM, Sigler WF (1960) Effects of sodium fluoride on carp and rainbow trout. Trans Am Fish Soc 89:358–370

    Article  CAS  Google Scholar 

  • Neumuller OA (1981) Rommps Chemie Lexicon, vol. 2, 8th edn. Franck’sche Verlagshandlung, Stuttgart (German)

    Google Scholar 

  • NRC (1993) Health effects of ingested fluoride, commission on life sciences. [National Research Council]. National Academy Press, Washington, DC, pp 51–72

    Google Scholar 

  • O’Donnell TA (1975) Fluorine. In: Comprehensive inorganic chemistry, vol II. Pergamon Press, Oxford, UK

    Google Scholar 

  • Omueti JAI, Jones RL (1977) Fluoride adsorption by Illinois soil. J Soil Sci 28:564–572

    Article  CAS  Google Scholar 

  • Omueti JAI, Jones RL (1980) Fluorine distribution with depth in relation to profile development in Illinois. Soil Sci Soc Am J 44:247–249

    Article  CAS  Google Scholar 

  • Ozsvath DL (2006) Fluoride concentrations in a crystalline bedrock aquifer, marathon county, Wisconsin. Environ Geol 50(10):132–138. doi:10.1007/s00254-006-0192-6

    Article  CAS  Google Scholar 

  • Pickering WF (1985) The mobility of soluble fluoride in soils. Environ Pollut Ser B 9(44):281–308

    Article  CAS  Google Scholar 

  • Polomski J, Fluhler H, Blaser P (1982) Fluoride induced mobilization and leaching of organic matter, iron and aluminium. J Environ Q 11:452–456

    Article  CAS  Google Scholar 

  • Prud’homme M (1990) Fluorspar. In: Canadian mineral year book, 1989 energy, mines, and resources. Ottawa, ON

    Google Scholar 

  • Reddy DR (1985) Some observations on fluoride toxicity. Nimhans J 3:79–86

    CAS  Google Scholar 

  • Reimann C, Decaritat P (eds) (1998) In: Chemical elements in environment. Fact sheets for the geochemist and environmental scientist. Springer, New York, NY

    Google Scholar 

  • Robinson WD, Edington G (1946) Fluorine in soils. Soil Sci 61:341–353

    Article  CAS  Google Scholar 

  • Saxena VK, Ahmed S (2001) Dissolution of fluoride in groundwater: a water reaction study. Environ Geol 40:1084–1087

    Article  CAS  Google Scholar 

  • Saxena VK, Ahmed S (2003) Inferring the chemical parameters for the dissolution of fluoride in ground water. Environ Geol 43(6):731–736

    CAS  Google Scholar 

  • Short HE, McRobert TW, Bernard AS, Mannadinayer AS (1937) Endemic fluorosis in the Madras Presidency. Ind J Med Res 25:553–561

    Google Scholar 

  • Shulman ER, Vallejo M. (1990) Effect of gastric contents on the bioavailability of fluoride in humans. Pediatr Dent 12(4):237–240

    CAS  Google Scholar 

  • Shupe JL, Sharma RP (1976) Fluoride distribution in natural ecosystem and related effects on wild animals. In: Hemphill DD (ed) Trace substances in environmental health, vol. 10. University of Missouri, Columbia, MO, p 137

    Google Scholar 

  • Siddiqui AH (1955) Fluorosis in Nalgonda district, Hyderabad-Deccan. Br Med J 2:1408–1413

    Article  CAS  Google Scholar 

  • Singh SP, Khare P, Satsangi GS, Lakhani A, Kumari SS, Srivastava SS (2001) Rainwater composition at a regional representative site of a semi-arid region of India. Water Air Soil Pollut 127:93–108

    Article  CAS  Google Scholar 

  • Skjelkvale BL (1994) Factors influencing fluoride concentrations in Norwegian Lakes. Water Air Soil Pollut 77:151–167

    Google Scholar 

  • Slavek J, Farrah H, Pickering WF (1984) Interaction of clays with dilute fluoride solutions. Water Air Soil Pollut 23:209–220

    Article  CAS  Google Scholar 

  • Smedley PL, Nicolli HB, Macdonald DMJ, Barros AJ, Tullio JO (2002) Hydro-geochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Appl Geochem 17(3):259–284. doi: 10.1016/S0883-2927(01)00082-8

    Article  CAS  Google Scholar 

  • Stevens DP, McLaughlin MJ, Alston AM (1997) Phyto-toxicity of aluminium–fluoride complexes and their uptake from solution culture by Avena sativa and Lycopersicon esculentum. Plant Soil 192:81–93

    Article  CAS  Google Scholar 

  • Susheela AK (2003) Treatise on fluorosis, 2nd edn. Fluorosis Research & Rural Development Foundation, Delhi, India, 137 pp

    Google Scholar 

  • Susheela AK, Kumar A, Bhatnagar M, Bahadur R (1993) Prevalence of endemic fluorosis with gastrointestinal manifestations in people living in some North-Indian villages. Fluoride 26(2):97–104

    Google Scholar 

  • UNEP-WHO (1992) Endemic fluorosis – a global health issue. Technical Report on Human Exposure Assessment Location Project

    Google Scholar 

  • UNICEF (1999) States of the art report on the extent of fluoride in drinking water and the resulting endemicity in India. Report by Fluorosis and Rural Development Foundation for UNICEF, New Delhi

    Google Scholar 

  • USPHS (1962) Drinking water standards. United States Public Health Services, Publications 956, USGPO, Washington, DC

    Google Scholar 

  • Wang LF, Huang JZ (1995) Outline of control practice of endemic fluorosis in China. Soc Sci Med 41(8):1191–1195

    Article  CAS  Google Scholar 

  • Warren C, Burgess WG, Garcia MG (2005) Hydro-chemical associations and depth profiles of arsenic and fluoride in quaternary loess aquifers of Northern Argentina. Min Mag (Lond) 69(5):877–886. doi:10.1180/0026461056950295

    Article  CAS  Google Scholar 

  • Wedephol (1974) Hand book of geochemistry, vol 2, Part 4. Springer, New York, NY, 9 K-1 pp

    Google Scholar 

  • Wenzel WW, Blum WEH (1992) Fluorine speciation and mobility in contaminated soils. Soil Sci 153(5):357–364

    Article  CAS  Google Scholar 

  • Whitford GM (1990) The physiological and toxicological characteristics of fluoride, Special issue. J Dent Res 69:539–549

    CAS  Google Scholar 

  • Whitford GM (1997) Determinants and mechanisms of enamel fluorosis. Ciba Found Symp 205:226–245

    CAS  Google Scholar 

  • Whitford GM, Pashley DH, Stringer GI (1976) Fluoride renal clearance: A 334 pH dependant events. Am J Physiol 230:527–532

    CAS  Google Scholar 

  • Whitford MG, Pashley DH (1984) Fluoride absorption: the influence of gastric acidity. Calcif Tissue Int 36(1):302–307

    Article  CAS  Google Scholar 

  • Whittemore DO, MacFarlane PA, Doveton JH, Butler JJ, Chu T, Bassler R, Smith M, Mitchell J, Wade A (1993) The Dakota aquifer program annual report, FY92. Kansas Geological Survey open-file report 93-1

    Google Scholar 

  • WHO (1970) Fluorides and human health. World Health Organization, Geneva, Switzerland Monograph Series No. 59, P 364

    Google Scholar 

  • WHO (1984) ‘Fluorine and fluorides’, environmental health criteria 36, IPCS international programme on chemical safety. World Health Organisation, Geneva

    Google Scholar 

  • WHO (1996) Guidelines for drinking water quality. Recommendations, vol 1. World Health Organisation, Geneva, 188 pp

    Google Scholar 

  • WHO (1997) Guideline for drinking water quality health criteria and other supporting information, vol 2, 2nd edn. World Health Organization, Geneva

    Google Scholar 

  • WHO (2002) Fluorides. World Health Organization, Geneva, Switzerland, Environmental Health Criteria Number 227

    Google Scholar 

  • WHO (2004) Guidelines for drinking water quality, 3rd edn. World Health Organisation, Geneva

    Google Scholar 

  • WHO (2005) Water-related diseases – fluorosis, the disease and how it affects people. World Health Organization, Geneva

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar Jha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer New York

About this chapter

Cite this chapter

Jha, S.K., Mishra, V.K., Sharma, D.K., Damodaran, T. (2011). Fluoride in the Environment and Its Metabolism in Humans. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology Volume 211. Reviews of Environmental Contamination and Toxicology, vol 211. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8011-3_4

Download citation

Publish with us

Policies and ethics