Skip to main content
Log in

Assessment of tolerance limits of petroleum residues in soil organic matter: sorption of dichlorobenzene by soil

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Soil organic matter can protect plants and microorganisms from toxic substances. Beyond the tolerance limit, the toxicity of petroleum pollution to soil organisms may increase rapidly with the increase of petroleum content. However, the method for evaluating the petroleum tolerance limit of soil organic matter (SOM) is still lacking. In this study, the petroleum saturation limit in SOM was first evaluated by the sorption coefficient (Kd) of 1,2-dichlorobenzene (DCB) from water to soils containing different petroleum levels. The sorption isotherm of dichlorobenzene in several petroleum-contaminated soils with different organic matter content and the microbial toxicity test of several petroleum-contaminated soils were determined. It is found that when the petroleum content is about 5% of the soil organic matter content, the sorption of petroleum to organic matter reached saturation limit. When organic matter reaches petroleum saturation limit, the sorption coefficient of DCB by soil particles increased linearly with the increase of petroleum content (R2 > 0.991). The results provided important insights into the understanding the fate of petroleum pollutants in soil and the analysis of soil toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Aber, J. D., Melillo, J. M., & McClaugherty, C. A. (1990). Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Canadian Journal of Botany, 68(10), 2201–2208. https://doi.org/10.1139/b90-287

    Article  Google Scholar 

  • Agamuthu, P., Tan, Y. S., & Fauziah, S. H. (2013). Bioremediation of hydrocarbon contaminated soil using selected organic wastes. Procedia Environmental Sciences, 18, 694–702. https://doi.org/10.1016/j.proenv.04.094

    Article  CAS  Google Scholar 

  • Balaganesh, P., Annapoorani, E., Sridevi, S., Vasudevan, M., Suneethkumar, S. M., & Natarajan, N. (2021). Sustainable practices and innovations in civil engineering. Lecture Notes in Civil Engineering, 79, 141–150. https://doi.org/10.1007/978-981-15-5101-7_14

    Article  Google Scholar 

  • Bandura, L., Woszuk, A., Kołodyńska, D., & Franus, W. (2017). Application of mineral sorbents for removal of petroleum substances: A review. Minerals, 7(3), 37. https://doi.org/10.3390/min7030037

    Article  CAS  Google Scholar 

  • Bhuyan, B., & Pandey, P. (2022). Remediation of petroleum hydrocarbon contaminated soil using hydrocarbonoclastic rhizobacteria, applied through Azadirachta indica rhizosphere. International Journal of Phytoremediation, 24(13), 1444–1454. https://doi.org/10.1080/15226514.2022.2033689

    Article  CAS  Google Scholar 

  • Brand, E., Lijzen, J., Peijnenburg, W., & Swartjes, F. (2013). Possibilities of implementation of bioavailability methods for organic contaminants in the Dutch Soil Quality Assessment Framework. Journal of Hazardous Materials, 261, 833–839. https://doi.org/10.1016/j.jhazmat.2012.11.066

    Article  CAS  Google Scholar 

  • Chaineau, C. H., Yepremian, C., Vidalie, J. F., Ducreux, J., & Ballerini, D. (2003). Bioremediation of a crude oil-polluted soil: Biodegradation, leaching and toxicity assessments. Water Air and Soil Pollution, 144, 419–440. https://doi.org/10.1023/A:1022935600698

    Article  CAS  Google Scholar 

  • Chen, C. H., Liu, P. W. G., & Whang, L. M. (2019). Effects of natural organic matters on bioavailability of petroleum hydrocarbons in soil-water environments. Chemosphere, 233, 843–851. https://doi.org/10.1016/j.chemosphere.2019.05.202

    Article  CAS  Google Scholar 

  • Chen, H., Chen, S., Quan, X., Zhao, H., & Zhang, Y. (2008). Sorption of polar and nonpolar organic contaminants by petroleum-contaminated soil. Chemosphere, 73(11), 1832–1837. https://doi.org/10.1016/j.chemosphere.2008.08.005

    Article  CAS  Google Scholar 

  • Chen, J., Hu, J. D., Wang, X. J., & Tao, S. (2006). Desorption of polycyclic aromatic hydrocarbons from soil in presence of surfactants. Environmental Sciences, 27(2), 361–365. (In Chinese)

    Google Scholar 

  • Chen, M., Xu, P., Zeng, G., Yang, C., Huang, D., & Zhang, J. (2015). Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. Biotechnology Advances, 33(6), 745–755. https://doi.org/10.1016/j.biotechadv.2015.05.003

    Article  CAS  Google Scholar 

  • Chiou, C. T. (2002). Partition and adsorption of organic contaminants in environmental systems. Wiley.

    Book  Google Scholar 

  • Dorn, P. B., & Salanitro, J. P. (2000). Temporal ecological assessment of petroleum contaminated soil before and after bioremediation. Chemosphere, 40(4), 46–51.

    Article  Google Scholar 

  • Dror, I., Gerstl, Z., Prost, R., & Yaron, B. (2002). Abiotic behavior of entrapped petroleum products in the subsurface during leaching. Chemosphere, 49(10), 1375–1388. https://doi.org/10.1016/S0045-6535(02)00529-5

    Article  CAS  Google Scholar 

  • Fan, M. Y., Xie, R. J., & Qin, G. (2013). Bioremediation of petroleum-contaminated soil by a combined system of biostimulation–bioaugmentation with yeast. Environmental Technology, 35(4), 391–399. https://doi.org/10.1080/09593330.2013.829504

    Article  Google Scholar 

  • Fei, Y. H., Leung, K., & Li, X. Y. (2017). Adsorption of 17 α-ethyl estradiol with the competition of bisphenol A on the marine sediment of Hong Kong. Marine Pollution Bulletin, 124(2), 753–759. https://doi.org/10.1016/j.marpolbul.2017.06.068

    Article  CAS  Google Scholar 

  • Fu, Y. J. (2003). Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments. Applied Geochemistry, 18, 955–972. https://doi.org/10.1016/S0883-2927(02)00205-6

    Article  CAS  Google Scholar 

  • Gerenfes, D., Giorgis, A., & Negasa, G. (2022). Comparison of organic matter determination methods in soil by loss on ignition and potassium dichromate method. International Journal of Horticulture and Food Science, 4(1), 49–53. https://doi.org/10.33545/26631067.2022.v4.i1a.85

    Article  Google Scholar 

  • Gong, X., Xu, W., & He, Y. (2017). Spectral characteristics of dissolved organic matter and its effects on the adsorption of β-HCH in the soil. Acta Scientiae Circumstantiae, 31(1), 318–325.

    Google Scholar 

  • Grathwohl, P. (1990). Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: Implications on Koc correlations. Environmental Science & Technology, 24(11), 1687–1693.

    Article  CAS  Google Scholar 

  • Guo, M., Zhao, F., Tian, L., Ni, K., Lu, Y., & Borah, P. (2022). Effects of polystyrene microplastics on the seed germination of herbaceous ornamental plants. Science of the Total Environment, 809, 151100. https://doi.org/10.1016/j.scitotenvol2021.151100

    Article  CAS  Google Scholar 

  • Hakim, S. S., Olsson, M. H., Sørensen, H. O., Bovet, N., Bohr, J., Feidenhans’l, R., & Stipp, S. L. (2017). Interactions of the calcite {10.4} surface with organic compounds: Structure and behavior at mineral–organic interfaces. Scientific Reports, 7(1), 1–11.

    Article  CAS  Google Scholar 

  • Hassett, J. P., & Anderson, M. A. (1982). Effects of dissolved organic matter on adsorption of hydrophobic organic compounds by river-and sewage-borne particles. Water Research, 16(5), 681–686. https://doi.org/10.1016/0043354(82)90091-4

    Article  CAS  Google Scholar 

  • Hedges, J. I., Baldock, J. A., Gélinas, Y., Lee, C., Peterson, M., & Wakeham, S. G. (2001). Evidence for non-selective preservation of organic matter in sinking marine particles. Nature, 409(6822), 801–804. https://doi.org/10.1038/35057247

    Article  CAS  Google Scholar 

  • Hoang, S. A., Sarkar, B., Seshadri, B., Lamb, D., Wijesekara, H., Vithanage, M., Liyanage, C., Kolivabandara, P. A., Rinklebe, J., Lam, S. S., & Vinu, A. (2021). Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments: A review. Journal of Hazardous Materials, 416, 125702. https://doi.org/10.1016/j.jhazmat.2021.125702

    Article  CAS  Google Scholar 

  • Hung, H. W., Sheng, G. D., Lin, T. F., Su, Y., & Chiou, C. T. (2009). The organic contamination level based on the total soil mass is not a proper index of the soil contamination intensity. Environmental Pollution, 157(11), 2928–2932. https://doi.org/10.1016/j.envpol.2009.07.007

    Article  CAS  Google Scholar 

  • Hunt, J. M. (1991). Generation of gas and oil from coal and other terrestrial organic matter. Organic Geochemistry, 17(6), 673–680.

    Article  CAS  Google Scholar 

  • Jonker, M. T., & Barendregt, A. (2006). Oil is a sedimentary supersorbent for polychlorinated biphenyls. Environmental Science & Technology, 40(12), 3829–3835. https://doi.org/10.1021/es0601080

    Article  CAS  Google Scholar 

  • Jonker, M., Sinke, A., Brils, J. M., & Koelmans, A. A. (2003). Sorption of polycyclic aromatic hydrocarbons to petroleum contaminated sediment: Unresolved complex? Environmental Science & Technology, 37(22), 5197–5203.

    Article  CAS  Google Scholar 

  • Karimi, A. H., & Hamidi, A. (2021). Effect of phytoremediation on the shear strength characteristics of silty clayey sand. Bulletin of Engineering Geology and the Environment, 80, 1–20.

    Article  Google Scholar 

  • Kile, D. E., Chiou, C. T., Zhou, H., Li, H., & Xu, O. (1995a). Partition of nonpolar organic pollutants from water to soil and sediment organic matters. Environmental Science & Technology, 29(5), 1401–1406.

    Article  CAS  Google Scholar 

  • Kile, D. E., Chiou, G. T., Zhou, H., Hui, L. I., & Ouyong, X. U. (1995b). Partition of nonpolar organic pollutants from water to soil and sediment organic matters. Environmental Science & Technology, 29(5), 1401–1406. https://doi.org/10.1021/es00005a037

    Article  CAS  Google Scholar 

  • Kudakwashe, M. E., Qiang, L. I., Shuai, W. U., & Yanfei, Y. U. (2022). Plant-and microbe-assisted biochar amendment technology for petroleum hydrocarbon remediation in saline-sodic soils: a review. Pedosphere, 32(1), 1–22. https://doi.org/10.1016/S10020160(21)60041-3

    Article  Google Scholar 

  • Kumar, M., Bolan, N., Jasemizad, T., Padhye, L. P., Sridharan, S., Singh, L., Bolan, S., O’Connor, J., Zhao, H., Shaheen, S. M., & Song, H. (2022). Mobilization of contaminants: potential for soil remediation and unintended consequences. Science of the Total Environment, 839, 156373.

    Article  CAS  Google Scholar 

  • Li, H., Gao, Y., Jiang, L., Zheng, F., & Wang, M. (2010). Impacts of petroleum pollutants on rape biomass, microbial population and the petroleum pollutants residue in soil. Chinese Agricultural Science Bulletin, 17, 1–4.

    Google Scholar 

  • Li, X., Li, N., Jiang, L., Hu, Y., Murati, H., & Su, Y. (2023). Exploring the existing state of petroleum based on the adsorption capacity of carbon tetrachloride in petroleum-contaminated soil. Journal of Soils and Sediments. https://doi.org/10.1007/s11368-023-03605-9

    Article  Google Scholar 

  • Li, Y., Wei, M., Liu, L., Xue, Q., & Yu, B. (2020). Adsorption of toluene on various natural soils: Influences of soil properties, mechanisms, and model. Science of the Total Environment, 740, 140104. https://doi.org/10.1016/j.scitotenv.2020.140104

    Article  CAS  Google Scholar 

  • Lin, Q., Tan, X., Almatrafi, E., Yang, Y., Wang, W., Luo, H., Qin, F., Zhou, C., Zeng, G., & Zhang, C. (2022). Effects of biochar-based materials on the bioavailability of soil organic pollutants and their biological impacts. Science of the Total Environment, 826, 153956. https://doi.org/10.1016/j.scitotenv.2022.153956

    Article  CAS  Google Scholar 

  • Liu, P. W. G., Wang, S. Y., Huang, S. G., & Wang, M. Z. (2012). Effects of soil organic matter and aging on remediation of diesel-contaminated soil. Environmental Technology, 33(23), 2661–2672. https://doi.org/10.1080/09593330.2012.673017

    Article  CAS  Google Scholar 

  • Liu, P., Zhu, D., Zhang, H., Shi, X., & Dang, F. (2008). Sorption of polar and nonpolar aromatic compounds to four surface soil of eastern China. Environmental Pollution, 156(3), 1053–1060. https://doi.org/10.1016/j.envpol.2008.04.020

    Article  CAS  Google Scholar 

  • Lu, Y., & Pignatello, J. J. (2004). Sorption of apolar aromatic compounds to soil humic acid particles affected by aluminum(III) ion cross-linking. Journal of Environmental Quality, 33(4), 1314–1321. https://doi.org/10.1016/j.envpol.2008.04.020

    Article  CAS  Google Scholar 

  • Ma, C., Feng, X., Ding, Y., et al. (2018). Nano-pore distribution of biochar and soil aggregates revealed with the technology of nuclear magnetic resonance cryoporometry. Chinese Journal of Soil Science, 49(3), 582–587.

    Google Scholar 

  • Mader, B. T., Uwe-Goss, K., & Eisenreich, S. J. (1997). Sorption of nonionic, hydrophobic organic chemicals to mineral surfaces. Environmental Science & Technology, 31(4), 1079–1086. https://doi.org/10.1021/es960606g

    Article  CAS  Google Scholar 

  • McCarthy, J. F., Roberson, L. E., & Burrus, L. W. (1989). Association of benzo(a)pyrene with dissolved organic matter: Prediction of Kdom from structural and chemical properties of the organic matter. Chemosphere, 19(12), 1911–1920. https://doi.org/10.1016/0045-6535(89)90014-3

    Article  CAS  Google Scholar 

  • MEE (Ministry of Ecology and Environment of PRC) and MLS (Ministry of land and resources of PRC). (2014). National soil pollution survey Bulletin [EB/OL]. http://www.zhb.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm

  • Mikutta, R., Kleber, M., Torn, M. S., & Jahn, R. (2006). Stabilization of soil organic matter: Association with minerals or chemical recalcitrance? Biogeochemistry, 77(1), 25–56. https://doi.org/10.1007/s10533-005-0712-6

    Article  CAS  Google Scholar 

  • Mott, H. V. (2002). Association of hydrophobic organic contaminants with soluble organic matter: Evaluation of the database of Kdoc values. Advances in Environmental Research, 6(4), 577–593. https://doi.org/10.1016/S1093-0191(01)00104-6

    Article  CAS  Google Scholar 

  • Murphy, E. M., Zachara, J. M., & Smith, S. C. (1990). Influence of mineral-bound humic substances on the sorption of hydrophobic organic compounds. Environmental Science & Technology, 24(10), 1507–1516. https://doi.org/10.1021/es00080a009

    Article  CAS  Google Scholar 

  • Noh, S. R., Kim, J. A., Cheong, H. K., Ha, M., Jee, Y. K., & Park, M. S. (2019). Hebei spirit petroleum spill and its long-term effect on children’s asthma symptoms. Environmental Pollution, 248, 286–294. https://doi.org/10.1016/j.envpol.2019.02.034

    Article  CAS  Google Scholar 

  • Novak, J. M., Jayachandran, K., Moorman, T. B., & Weber, J. B. (1995). Sorption and binding of organic compounds in soils and their relation to bioavailability. Bioremediation Science and Applications, 43, 13–31. https://doi.org/10.1016/0016-7037(83)90148-5

    Article  CAS  Google Scholar 

  • Ogboghodo, I. A., Iruaga, E. K., Osemwota, I. O., & Chokor, J. U. (2004). An assessment of the effects of crude petroleum pollution on soil properties, germination and growth of maize (zea mays) using two crude types–forcados light and escravos light. Environmental Monitoring & Assessment, 96(1/3), 143–152.

    Article  CAS  Google Scholar 

  • Paramananthan, S., Lee, P. X., Wong, M. K., Van Ranst, E., Wüst, R. A. J., & Vijiandran, J. R. (2018). A comparative study of the use of organic carbon and loss on ignition in defining tropical organic soil materials. Communications in Soil Science and Plant Analysis, 49(5), 626–634. https://doi.org/10.1080/00103624.2018.1435683

    Article  CAS  Google Scholar 

  • Patowary, R., Patowary, K., Kalita, M. C., & Deka, S. (2018). Application of biosurfactant for enhancement of bioremediation process of crude oil contaminated soil. International Biodeterioration & Biodegradation, 129, 50–60. https://doi.org/10.1016/j.ibiod.2018.01.004

    Article  CAS  Google Scholar 

  • Petenello, M. C., Beltrán, C., & Feldman, S. R. (2014). Effect of diesel-oil addition on soil microbiological parameters in systems with and without plants. Terra Latinoamericana, 32(4), 301–309. https://doi.org/10.1016/S0001-8686(98)00055-4

    Article  Google Scholar 

  • Ping, L. F., & Luo, Y. M. (2005). Effects of organic matter on environmental behaviors of polycyclic aromatic hydrocarbons. Soils, 37(4), 362–369.

    CAS  Google Scholar 

  • Plaza, G., Nalecz-Jawecki, G., Ulfig, K., & Brigmon, R. (2005). The application of bioassays as indicators of petroleum-contaminated soil remediation. Chemosphere, 59(2), 289–296. https://doi.org/10.1016/j.chemosphere.2004.11.049

    Article  CAS  Google Scholar 

  • Pozhilenkova, P. V., Aponasenko, A. D., & Filimonov, V. S. (2004). Investigation of formation and structural characteristics of the adsorbed layer of organic matter on suspended mineral particles after the examples of humate an adsorption processes on clay minerals. Proceedings of SPIE the International Society for Optical Engineering, 15(4), 215–225.

    Google Scholar 

  • Qian, Y., Chunsheng, Y., & Cheng, D. (2011). Adsorption of 1, 2-dichlorobenzene on three kinds of substrates from constructed wetlands. Chinese Journal of Environmental Engineering, 07, 1675–1680.

    Google Scholar 

  • Rasul, M., Cho, J., Shin, H. S., & Hur, J. (2022). Biochar-induced priming effects in soil via modifying the status of soil organic matter and microflora: A review. Science of the Total Environment, 805, 150304. https://doi.org/10.1016/j.scitotenv.2021.150304

    Article  CAS  Google Scholar 

  • Rheinländer, T., Klumpp, E., & Schwuger, M. J. (1998). On the adsorption of hydrophobic pollutants on surfactant/clay complexes: comparison of the influence of a cationic and a nonionic surfactant. Journal of Dispersion Science and Technology, 19(2–3), 379–398. https://doi.org/10.1080/01932699808913181

    Article  Google Scholar 

  • Schaeffer, A. (2001). Does supersorbent soot control PAH fate? Environmental Science & Technology, 35(1), 10A. https://doi.org/10.1021/es012241s

    Article  Google Scholar 

  • Schumacher, B. A. (2002). Methods for the determination of total organic carbon (TOC) in soils and sediments. Ecological Risk Assessment Support Center U.S.EPA.

    Google Scholar 

  • Schwarzenbach, R. P., & Westall, J. (1981). Transport of Nonpolar Organic Compounds from Surface Water to Groundwater. Laboratory Sorption Studies. Environmental Science & Technology, 15(11), 1360–1367. https://doi.org/10.1021/es00093a009

    Article  CAS  Google Scholar 

  • Shahriari, M. H., Savaghebi-Firoozabadi, G., Azizi, M., Kalantari, F., & Minai-Tehrani, D. (1998). Study of growth and germination of medicago sativa (alfalfa) in light crude petroleum-contaminated soil. Chromatographia, 47(11–12), 716–720.

    Google Scholar 

  • Shen, L., & Jaffe, R. (2000). Interactions between dissolved petroleum hydrocarbons and pure and humic acid-coated mineral surfaces in artificial seawater. Marine Environmental Research, 49(3), 217–231. https://doi.org/10.1016/S0141-1136(99)00066-5

    Article  CAS  Google Scholar 

  • Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for c-saturation of soils. Plant and Soil, 241(2), 155–176. https://doi.org/10.1023/A:1016125726789

    Article  CAS  Google Scholar 

  • Spasojevic, J., Maletic, S., Roncevic, S., et al. (2018). The role of organic matter and clay content in sediments for bioavailability of pyrene. Water Science and Technology, 77(1/2), 439–447.

    Article  CAS  Google Scholar 

  • Stokes, J. D., Paton, G. I., & Semple, K. T. (2005). Behavior and assessment of bioavailability of organic contaminants in soil: Relevance for risk assessment and remediation. Soil Use and Management, 21, 475–486. https://doi.org/10.1079/SUM2005347

    Article  Google Scholar 

  • Styrishave, B., Bjoerklund, E., Johnsen, A., & Halling-Sorensen, B. (2012). The spatial heterogeneity of polycyclic aromatic hydrocarbons in soil depends on their physico-chemical properties. Water Air & Soil Pollution, 223(3), 969–977.

    Article  CAS  Google Scholar 

  • Sun, S., & Boyd, S. A. (1991). Sorption of polychlorobiphenyl (PCB) congeners by residual pcb-petroleum phases in soils. Journal of Environmental Quality, 20(3), 557–561. https://doi.org/10.2134/jeq1991.00472425002000030009x

    Article  CAS  Google Scholar 

  • Sun, Y., Xiong, X., He, M., Xu, Z., Hou, D., Zhang, W., & Tsang, D. C. (2021). Roles of biochar-derived dissolved organic matter in soil amendment and environmental remediation: a critical review. Chemical Engineering Journal, 424, 130387. https://doi.org/10.1016/j.cej.2021.130387

    Article  CAS  Google Scholar 

  • Tang, J., Lu, X., Sun, Q., & Zhu, W. (2012). Aging effect of petroleum hydrocarbons in soil under different attenuation conditions. Agriculture Ecosystems & Environment, 149, 109–117. https://doi.org/10.1016/j.agee.2011.12.020

    Article  CAS  Google Scholar 

  • Tang, J., Wang, M., & Wang, F. (2011). Eco-toxicity of petroleum hydrocarbon contaminated soil. Journal of Environmental Sciences, 23(5), 845–851. https://doi.org/10.1016/S1001-0742(10)60517-7

    Article  CAS  Google Scholar 

  • Tang, L., Gudda, F. O., Wu, C., Ling, W., El-Ramady, H., Mosa, A., & Wang, J. (2022). Contributions of partition and adsorption to polycyclic aromatic hydrocarbons sorption by fractionated soil at different particle sizes. Chemosphere, 301, 134715. https://doi.org/10.1016/j.chemosphere.2022.134715

    Article  CAS  Google Scholar 

  • Thamaraiselvi, T., Brindha, S., Kaviyarasi, N. S., Annadurai, B., & Gangwar, S. K. (2012). Effect of organic amendments on the bio chemical transformations under different soil conditions. International Journal of Advanced Biological Research, 2(1), 171–173.

    Google Scholar 

  • Ugochukwu, U. C., Jones, M. D., Head, I. M., Manning, D., & Fialips, C. I. (2014). Biodegradation and adsorption of crude oil hydrocarbons supported on “homoionic” montmorillonite clay minerals. Applied Clay Science, 87, 81–86. https://doi.org/10.1016/j.clay.2013.11.022

    Article  CAS  Google Scholar 

  • Vasudevan, M., Ajithkumar, P. S., Singh, R. P., & Natarajan, N. (2016b). Mass transfer kinetics using two-site interface model for removal of Cr (VI) from aqueous solution with cassava peel and rubber tree bark as adsorbents. Environmental Engineering Research, 21(2), 152–163. https://doi.org/10.4491/eer.2015.152

    Article  Google Scholar 

  • Vasudevan, M., Karthika, K., Gowthaman, S., Karthick, K., Balaganesh, P., Suneeeth Kumar, S. M., & Natarajan, N. (2021). Aerobic in-vessel co-composting of dewatered sewage sludge with mixed municipal wastes under subhumid and semiarid atmospheric conditions. Energy Sources Part a: Recovery Utilization and Environmental Effects, 43(24), 3403–3414. https://doi.org/10.1080/15567036.2019.1624888

    Article  CAS  Google Scholar 

  • Vasudevan, M., Kumar, G. S., & Nambi, I. M. (2015). Numerical studies on kinetics of sorption and dissolution and their interactions for estimating mass removal of toluene from entrapped soil pores. Arabian Journal of Geosciences, 8, 6895–6910. https://doi.org/10.1007/s12517-014-1681-7

    Article  CAS  Google Scholar 

  • Vasudevan, M., Nambi, I. M., & Kumar, G. S. (2016a). Scenario-based modeling of mass transfer mechanisms at a petroleum contaminated field site-numerical implications. Journal of Environmental Management, 175, 9–19. https://doi.org/10.1016/j.jenvman.2016.03.009

    Article  CAS  Google Scholar 

  • Vasudevan, M., Suresh Kumar, G., & Nambi, I. M. (2016c). Numerical modeling on rate-limited dissolution mass transfer of entrapped petroleum hydrocarbons in a saturated sub-surface system. ISH Journal of Hydraulic Engineering, 22(1), 3–15. https://doi.org/10.1080/09715010.2015.1043596

    Article  Google Scholar 

  • Wang, K., & Xing, B. S. (2005). Structural and sorption characteristics of adsorbed humic acid on clay minerals. Journal of Environmental Quality, 34(1), 342–349. https://doi.org/10.2134/jeq2005.0342

    Article  CAS  Google Scholar 

  • Wang, X., Guo, X., Yu, Y., Shu, T., & Xing, B. (2011). Sorption mechanisms of phenanthrene, lindane, and atrazine with various humic acid fractions from a single soil sample. Environmental Science & Technology, 45(6), 2124–2130. https://doi.org/10.1021/es102468z

    Article  CAS  Google Scholar 

  • Weber, W. J., & Huang, W. A. (1996). Distributed reactivity model for sorption by soils and sediments. 4. Intraparticle heterogeneity and phase-distribution relationships under nonequilibrium conditions. Environmental Science & Technology, 30(10), 880–888. https://doi.org/10.1021/es950329y

    Article  Google Scholar 

  • Wu, B., & Guo, S. (2020). Spatial ecological risk assessment for contaminated soil in petroleumed fields. Journal of Hazardous Materials, 403, 123984. https://doi.org/10.1016/j.jhazmat.2020.123984

    Article  CAS  Google Scholar 

  • Xing, B., & Pignatello, J. J. (1996). Time-dependent isotherm shape of organic compounds in soil organic matter implications for sorption mechanism. Environmental Toxicology & Chemistry, 15(8), 1282–1288. https://doi.org/10.1002/etc.5620150805

    Article  CAS  Google Scholar 

  • Xu, Y., & Lu, M. (2010). Bioremediation of crude oil-contaminated soil: Comparison of different biostimulation and bioaugmentation treatments. Journal of Hazardous Materials, 183(1–3), 395–401. https://doi.org/10.1016/j.jhazmat.2010.07.038

    Article  CAS  Google Scholar 

  • Yang, Y., Zhang, N., Xue, M., Lu, S. T., & Tao, S. (2011). Effects of soil organic matter on the development of the microbial polycyclic aromatic hydrocarbons (PAHs) degradation potentials. Environmental Pollution, 159(2), 591–595. https://doi.org/10.1016/j.envpol.2010.10.003

    Article  CAS  Google Scholar 

  • Zemanek, M. G., Pollard, S. J. T., Kenefick, S. L., & Hrudey, S. E. (1997). Multi-phase partitioning and co-solvent effects for polynuclear aromatic hydrocarbons (pah) in authentic petroleum- and creosote-contaminated soils. Environmental Pollution, 98(2), 239–252. https://doi.org/10.1016/S0269-7491(97)00126-7

    Article  CAS  Google Scholar 

  • Zhang, Y., Gao, J., Wang, R., & Ren, Z. (2013). Determination of 1, 4-dichlorobenzene in water by headspace solid phase microextraction-gas chromatography. Industrial Water Treatment, 33(09), 76–79. (In Chinese).

    CAS  Google Scholar 

  • Zhuang, S., Zhu, L., & Liang, X. (2016). Sorption of polycyclic aromatic hydrocarbons to soils enhanced by heavy metals: perspective of molecular interactions. Journal of Soil & Sediments, 16, 1509–1518. https://doi.org/10.1007/s11368-015-1341-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Foundation of Xinjiang Educational Commission (XJEDU2021I07) and Xinjiang Uygur Autonomous Region Market Supervision and Administration Bureau Science and technology Foundation (No. 201902)

Funding

The author declared that no funds, grants, or other support were received for this study.

Author information

Authors and Affiliations

Authors

Contributions

XL contributed to conceptualization, investigation, formal analysis, writing—original draft. YS contributed to supervision, writing—review & editing, resources, funding acquisition. XL contributed to writing—review & editing, funding acquisition. ML contributed to writing—review & editing. NL contributed to writing—review & editing. HM contributed to writing—review & editing. LJ contributed to writing—review & editing. YH contributed to writing—review & editing.

Corresponding author

Correspondence to Yuhong Su.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, X., Li, M. et al. Assessment of tolerance limits of petroleum residues in soil organic matter: sorption of dichlorobenzene by soil. Environ Geochem Health 46, 16 (2024). https://doi.org/10.1007/s10653-023-01798-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-023-01798-z

Keywords

Navigation