Skip to main content

Advertisement

Log in

Impact assessment of air pollutants and greenhouse gases on urban heat wave events in the Beijing–Tianjin–Hebei region

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The production and quality of human life have been impacted by the extreme heat wave events caused by global warming and urbanization. This study analyzed the prevention of air pollution and the strategies of emission reduction based on decision trees (DT), random forests (RF), and extreme random trees (ERT). Additionally, we quantitatively investigated the contribution rate of atmospheric particulate pollutants and greenhouse gases to urban heat wave occurrences by combining numerical models and big data mining technology. This study focuses on changes in the urban environment and climate. The main findings of this study are as follows. The average concentrations of PM2.5 in the northeast of Beijing–Tianjin–Hebei in 2020 were 7.4%, 0.9%, and 9.6% lower than those in the corresponding years of 2017, 2018, and 2019, respectively. The carbon emissions in the Beijing–Tianjin–Hebei region showed an increasing trend during the previous 4 years, which was consistent with the spatial distribution of PM2.5. In 2020, there were fewer urban heat waves, which was attributable to a reduction of 75.7% in emissions and an improvement of 24.3% in the prevention and management of air pollution. These results suggest that the government and environmental protection agencies need to pay attention to changes in the urban environment and climate to diminish the negative effects of heatwaves on the health and economic growth of the urban population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barrett, J., Peters, G., Wiedmann, T., Scott, K., Lenzen, M., Roelich, K., & Le Quéré, C. (2013). Consumption-based GHG emission accounting: A UK case study. Climate Policy, 13(4), 451–470. https://doi.org/10.1080/14693062.2013.788858

    Article  Google Scholar 

  • Brandi, A., Broadbent, A. M., Krayenhoff, E. S., & Georgescu, M. (2021). Influence of projected climate change, urban development and heat adaptation strategies on the end of twenty-first-century urban boundary layers across the Conterminous US. Climate Dynamics, 2021, 1–17.

    Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  • Cairong, R. E. N., & Gang, X. I. E. (2019). Prediction of PM2.5 concentration level based on random forest and meteorological parameters. Computer Engineering and Applications, 55(2), 213–220.

    Google Scholar 

  • Chen, Y., Hu, Q., Yang, Y., & Qian, W. (2017). Anomaly based analysis of extreme heat waves in Eastern China during 1981–2013. International Journal of Climatology, 37(1), 509–523.

    Article  Google Scholar 

  • Congwu, H., Newspaper, C., Chaoqun, Ma., & Tijian, W. (2018). WRF-CMAQ-MOS model based on extreme random tree method. Journal of Meteorology, 05, 779–789.

    Google Scholar 

  • Ding, S., Chen, B. Z., Wang, J., Chen, L., Zhang, C. L., Sun, S. B., & Huang, C. W. (2018). An applied research of decision-tree based statistical model in forecasting the spatial-temporal distribution of O3. Acta Scientiae Circumstantiae, 38, 3229–42.

    CAS  Google Scholar 

  • Gang, F. (2021). China blue book on climate change (2021) released. Environment, 11, 75–77.

    Google Scholar 

  • Gao, Z. B., Zhu, J. S., Guo, Y., Luo, N., & Wang, T. (2021). Impact of land surface processes on a record-breaking rainfall event on May 06–07, 2017 in Guangzhou China. Journal of Geophysical Research Atmospheres. https://doi.org/10.1029/2020JD032997

    Article  Google Scholar 

  • General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Repub. (2012). Grade of the heat wave: GB/T 29457–2012

  • Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63(1), 3–42. https://doi.org/10.1007/s10994-006-6226-1

    Article  Google Scholar 

  • Green, T. J., Siboni, N., King, W. L., Labbate, M., Seymour, J. R., & Raftos, D. (2019). Simulated marine heat wave alters abundance and structure of vibrio populations associated with the pacific oyster resulting in a mass mortality event. Microbial Ecology. https://doi.org/10.1007/s00248-018-1242-9

    Article  Google Scholar 

  • Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., & Briggs, J. M. (2008). Global change and the ecology of cities. Science, 319(5864), 756–760.

    Article  CAS  Google Scholar 

  • Guojun, H., Shenbo, W., Bing, He., Ruoyu, X., Gengyu, G., & Ruiqin, Z. (2022). Effects of epidemic control measures in COVID-19 on the concentration, particle size distribution, composition and source of PM2.5 in Zhengzhou. Environmental Science, 06, 2840–2850. https://doi.org/10.13227/J.HKX.20

    Article  Google Scholar 

  • Han Dongrui, Xu., Xinliang, L. J., & XihuaGeorge, S. (2017). Study on the thermal environment security pattern of the Yangtze River Delta urban agglomeration and the impact of land use change. Journal of Geoscience, 01, 39–49.

    Google Scholar 

  • Hancong, Fu., Fan, D., HuanPromise, Y., & Zhang, Z. (2020). Risk assessment of high temperature heat wave in the middle and lower reaches of Yangtze river based on remote sensing. Resources and Environment in Yangtze River Basin, 05, 1174–1182.

    Google Scholar 

  • Hereher, M., Eissa, R., Alqasemi, A., & El Kenawy, A. M. (2021). Assessment of air pollution at Greater Cairo in relation to the spatial variability of surface urban heat island. Environmental Science and Pollution Research, 29, 21412–21425. https://doi.org/10.1007/s11356-021-17383-9

    Article  CAS  Google Scholar 

  • Huang, X. M., Shi, R. R., & Liu, S. J. (2020). Spatial-temporal characteristics and causes of summer heat waves in southwest China. Plateau and Mountain Meteorology Research, 40(3), 59–65.

    Google Scholar 

  • Im, E. S., Pal, J. S., & Eltahir, E. A. B. (2017). Deadly heat waves projected in the densely populated agricultural regions of South Asia. Science Advances, 3(8), e1603322.

    Article  Google Scholar 

  • Jones, B., Tebaldi, C., O’Neill, B. C., Oleson, K., & Gao, J. (2018). Avoiding population exposure to heat-related extremes: demographic change vs climate change. Climatic change, 146, 423–437. https://doi.org/10.1007/s10584-017-2133-7

    Article  Google Scholar 

  • Kennedy, C. A., Ramaswami, A., Carney, S., & Dhakal, S. (2011). Greenhouse gas emission baselines for global cities and metropolitan regions, cities and climate change: Responding to an Urgent Agenda. The World Bank.

    Google Scholar 

  • Kennedy, C., Steinberger, J., Gasson, B., Hansen, Y., Hillman, T., Havránek, M., Pataki, D., Phdungsilp, A., Ramaswami, A., & Mendez, G. V. (2010). Methodology for inventorying greenhouse gas emissions from global cities. Energy policy, 38(9), 4828–4837.

    Article  CAS  Google Scholar 

  • Li, H. (2012). Statistical learning method. Tsinghua University Press.

    Google Scholar 

  • Lilleborge, M., Hauge, R., & Eidsvik, J. (2016). Information gathering in Bayesian networks applied to petroleum prospecting. Mathematical Geosciences, 48(3), 233–257.

    Article  CAS  Google Scholar 

  • Liu, J. H. M., Zheng, R., Lou, P. X., & Liang, M. (2019). Causes of heat wave weather in Shaanxi in July 2017 and preceding signals. Journal of Arid Meteorology, 37(2), 233–242.

    CAS  Google Scholar 

  • Mavrakis, A., Kapsali, A., Tsiros, I. X., & Pantavou, K. (2021). Air quality and meteorological patterns of an early spring heatwave event in an industrialized area of Attica, Greece. Euro-Mediterranean Journal for Environmental Integration, 6, 25. https://doi.org/10.1007/s41207-020-00237-0

    Article  Google Scholar 

  • McCarthy, M., Armstrong, L., & Armstrong, N. (2019). A new heatwave definition for the UK. Weather, 74(11), 382–387.

    Article  Google Scholar 

  • Mengjiao, X., Yang, W., Ying, K., et al. (2021). Effect of Artificial neural network and ordinary Kriging interpolation method on spatial prediction accuracy of soil attributes. Journal of Ecology and Rural Environment, 37(7), 934–942.

    Google Scholar 

  • Minli, Ni., Jiahua, Z., & Shuanghe, S. (2010). Characteristics of temperature changes at different time scales in Nanjing. Resources and Environment in the Yangtze River Basin, 02, 169–175.

    Google Scholar 

  • Om, K. C., Ren, G., Kim, K. H., Pak, Y. I., Jong, S. I., & Kil, H. N. (2022). Observed trends in extreme temperature events over northern part of the Korean Peninsula during 1960–2019 and a comparative overview—ScienceDirect. Atmospheric Research, 270, 106061.

    Article  Google Scholar 

  • Oukawa, G. Y., Krecl, P., & Targino, A. C. (2022). Fine-scale modeling of the urban heat island: A comparison of multiple linear regression and random forest approaches. Science of the Total Environment, 815, 152836.

    Article  CAS  Google Scholar 

  • Rong, J. (2016). Study on the temporal and spatial variation characteristics of thermal environment in Shanghai urban area and its influencing factors Master's thesis, East China Normal University. https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD202102&filename=1016138248.nh

  • Sahour, H., Gholami, V., Torkaman, J., Vazifedan, M., & Saeedi, S. (2021). Random forest and extreme gradient boosting algorithms for streamflow modeling using vessel features and tree-rings. Environmental Earth Sciences, 80, 747. https://doi.org/10.1007/s12665-021-10054-5

    Article  Google Scholar 

  • Shan, Y., Guan, D., Zheng, H., Ou, J., Li, Y., Meng, J., Mi, Z., Liu, Z., & Zhang, Q. (2018). China CO2 emission accounts 1997–2015. Scientific Data, 5(1), 170201.

    Article  CAS  Google Scholar 

  • Shan, Y., Huang, Q., Guan, D., & Hubacek, K. (2020). China CO2 emission accounts 2016–2017. Scientific Data, 7(1), 54.

    Article  CAS  Google Scholar 

  • Stefanon, M., D’Andrea, F., & Drobinski, P. (2012). Heatwave classification over Europe and the Mediterranean region. Environmental Research Letters, 7(1), 014023.

    Article  Google Scholar 

  • Sun, F., Hong, Z., Shuibing, W., & Yuwen, W. (2021a). Study on the temporal and spatial distribution of ozone in typical cities of the Yangtze River Delta and its correlation with meteorological factors. Journal of Atmospheric and Environmental Optics, 06, 483–494.

    Google Scholar 

  • Sun, Y., Zhang, X. B., Ding, Y. H., Chen, D. L., Qin, D. H., & Zhai, P. M. (2021). Understanding human influence on climate change in China. National Science Review. https://doi.org/10.1093/nsr/nwab113

    Article  Google Scholar 

  • Sy, I., Cisse, B., Ndao, B., Toure, M., Diouf, A. A., Sarr, M. A., Ndiaye, O., Ndiaye, Y., Badiane, D., Lalou, R., & Janicot, S. (2022). Heat waves and health risks in the northern part of Senegal: analysing the distribution of temperature-related diseases and associated risk factors. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-21205-x

    Article  Google Scholar 

  • Tao, H., Xing, J., Pan, G., Pleim, J., Ran, L., Wang, S., Chang, X., Li, G., Chen, F., & Li, J. (2022). Impact of anthropogenic heat emissions on meteorological parameters and air quality in Beijing using a high-resolution model simulation. Frontiers of Environmental Science & Engineering, 16, 1–11. https://doi.org/10.1007/s11783-021-1478-3

    Article  CAS  Google Scholar 

  • Tong, S., FitzGerald, G., Wang, X. Y., Aitken, P., Tippett, V., Chen, D., Wang, X., & Guo, Y. (2015). Exploration of the health risk-based definition for heatwave: A multi-city study. Environmental Research, 142, 696–702.

    Article  CAS  Google Scholar 

  • Wang, J., Chen, Y., Liao, W. L., He, G. H., Tett, F. B. S., Yan, Z. W., Zhai, P. M., Feng, J. M., Ma, W. J., Huang, C. R., & Hu, Y. M. (2021a). Anthropogenic emissions and urbanization increase risk of compound hot extremes in cities. Nature Climate Change. https://doi.org/10.1038/s41558-021-01196-2

    Article  Google Scholar 

  • Wang, J., Feng, J. M., Yan, Z. W., & Chen, Y. (2020). Future risks of unprec-edented compound heat waves over three vast urban agglom-erations in China. Earth’s Future. https://doi.org/10.1029/2020EF001716

    Article  Google Scholar 

  • Wang, P. Y. (2019). The spatiotemporal variations of heat waves in China and the underlying mechanisms. Nanjing University.

    Google Scholar 

  • Wang, P., Tang, J., Sun, X., Wang, S., Wu, J., Dong, X., & Fang, J. (2017). Heat waves in China: Definitions, leading patterns, and connections to large-scale atmospheric circulation and SSTs. Journal of Geophysical Research: Atmospheres, 122(20), 10–679.

    CAS  Google Scholar 

  • Wang, X., Sun, X., Tang, J., & Yang, X. (2015). Urbanization-induced regional warming in Yangtze River delta: potential role of anthropogenic heat release. International Journal of Climatology, 35, 4417–4430. https://doi.org/10.1002/joc.4296

    Article  Google Scholar 

  • Wang, Y. J., Chen, L. T., Song, Z. Y., Huang, Z. Q., Ge, E. J., Lin, L. J., & Luo, M. (2019). Human-perceived temperature changes over south china: long-term trends and urbanization effects. Atmospheric Research, 215, 116–127. https://doi.org/10.1016/j.atmosres.2018.09.006

    Article  Google Scholar 

  • Wen, W., Yanjun, H., & Chuanyi, X. (2021b). Temporal and spatial variation characteristics of heat wave events in Huaihe River Basin from 1961 to 2018. Geographical Sciences. https://doi.org/10.13249/j.cnki.sgs.2021.05.019

    Article  Google Scholar 

  • Wenyu, W., Xueyan, Z., & Weijun, W. (2016). Spatial-temporal pattern and influencing factors of carbon emissions from domestic energy of urban residents in China. Journal of Environmental Science, 09, 3445–3455. https://doi.org/10.13671/j.hjkxxb.2015.0817

    Article  CAS  Google Scholar 

  • Xu, Z., FitzGerald, G., Guo, Y., Jalaludin, B., & Tong, S. (2016). Impact of heatwave on mortality under different heatwave defifinitions: A systematic review and meta-analysis. Environment International, 90, 193–203.

    Article  Google Scholar 

  • Yang, J., Yin, P., Sun, J., Wang, B., Zhou, M., Li, M., Tong, S., Meng, B., Guo, Y., & Liu, Q. (2018). Heatwave and mortality in 31 major Chinese cities: Definition, vulnerability and implications. The Science of the Total Environment, 26(649), 695–702.

    Google Scholar 

  • Yang, Y., Na, Z., & Tianxiang, Y. (2022). Temporal and spatial evolution characteristics of extreme high temperature events in China from 1980 to 2018. Geographical Sciences, 03, 536–547. https://doi.org/10.13249/j.cnki.sgs.2022.03.018

    Article  Google Scholar 

  • Yi-Ling, H., Bao-De, C., Xu-Chao, Y., & Ping, L. (2013). Observed climate change in east china during 1961–2007. Advances in Climate Change Research, 4(2), 84–91.

    Article  Google Scholar 

  • Yuan, Qi., Yuanbin, Li., & Yongan, Z. (2021). Study on coordinated emission reduction strategy of regional industries based on Multi-Agent. Soft Science, 08, 100–105. https://doi.org/10.13956/j.ss.1001-8409.2021.08.15

    Article  Google Scholar 

  • Zampieri, M., Russo, S., di Sabatino, S., Michetti, M., Scoccimarro, E., & Gualdi, S. (2016). Global assessment of heat wave magnitudes from 1901 to 2010 and implications for the river discharge of the Alps. Science of the Total Environment, 571, 1330–1339.

    Article  CAS  Google Scholar 

  • Zheng, Z., Yan, D., Wen, X., Wei, Z., Chou, J., Guo, Y., Zhu, X., & Dong, W. (2022). The effect of greenhouse gases concentration and urbanization on future temperature over Guangdong-Hong Kong-Macao Greater Bay Area in China. Climate Dynamics, 58, 3369–3392. https://doi.org/10.1007/s00382-021-06103-1

    Article  Google Scholar 

Download references

Acknowledgements

This work was financed by the Ningxia Higher Education First-Level Discipline Construction Project (NXYLXK2017B09) and the North University for Nationalities Postgraduate Innovation Project (YCX22086). Maps were created using Generic Mapping Tools (ArcMap). Perceptually, uniform color maps were used to prevent visual distortion of the data.

Funding

This work was supported by the Ningxia Natural Science Funding (2021AAC03223, 2022AAC03269), Ningxia Higher Education First-Level Discipline Construction Project (NXYLXK2017B09) and Innovative Project for Postgraduates of North University for Nationalities (YCX22086).

Author information

Authors and Affiliations

Authors

Contributions

DW: original draft preparation, writing Conceptualization, funding, Software.

Corresponding author

Correspondence to Shuhua Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, W., Liu, S. Impact assessment of air pollutants and greenhouse gases on urban heat wave events in the Beijing–Tianjin–Hebei region. Environ Geochem Health 45, 7693–7709 (2023). https://doi.org/10.1007/s10653-023-01677-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01677-7

Keywords

Navigation