Skip to main content
Log in

Spatial distribution of radon contamination in hot springs water and its cancer and non-cancer risks in the Hunza-Nagar valley, Pakistan

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Radon (222Rn) is a ubiquitous radioactive gas and could threaten human life due to its potential for cancer and non-cancer risks. This study examined the measurement of 222Rn concentration and associated health risks in the hot springs of Hunza-Nagar valley. For this purpose, the hot springs water of Hunza and Nagar districts and the background sites were analyzed for 222Rn concentration using the RAD7 detector (Durridge Company, USA). The average concentrations of 222Rn were 46.1 ± 0.94, 65.3 ± 0.45, and 5.47 ± 0.25 Bq/L in the Hunza district, Nagar district, and background sites, respectively. Results showed that 222Rn concentrations of hot springs water were multifold higher than the background sites. 222Rn concentrations for hot springs water in Hunza-Nagar valley had surpassed the maximum contamination level set by the US environmental protection agency (USEPA). Humans’ annual mean exposure dose rates of various age groups were calculated for the estimated lifetime cancer risk (ELCR) and non-cancer risks. The total annual mean exposure doses from 222Rn in water (EwTotal) values were (187 ± 3.80, 265 ± 1.84, and 22.2 ± 1.02 μSv/a) for infants (143 ± 2.92, 203 ± 1.40, and 17.0 ± 0.78 μSv/a) children, and (138 ± 2.80, 196 ± 1.35, and 16.4 ± 0.76 μSv/a) adults in the Hunza district, Nagar district, and background, respectively. Among the age groups of humans, infants showed a higher risk than others. Results showed that hot springs water consumption surpassed the world health organization threshold of 100 μSv/y for chronic or non-cancer and USEPA 0.1 × 10–3 for ELCR risks. The concentration of 222Rn showed a positive correlation (> 0.68) with hot springs' water temperature and pH suggesting a common origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data supporting this study’s findings are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  • Abbas, Z., et al. (2021). Distribution and health risk assessment of trace elements in ground/surface water of Kot Addu Punjab, Pakistan: A multivariate analysis. Environmental Monitoring and Assessment, 193, 1–11.

    Article  Google Scholar 

  • Abdallah, S. M., Habib, R. R., Nuwayhid, R. Y., Chatila, M., & Katul, G. (2007). Radon measurements in well and spring water in Lebanon. Radiation Measurements, 42, 298–303.

    Article  CAS  Google Scholar 

  • Ahmad, M., Akram, W., Hussain, S., Sajjad, M., & Zafar, M. (2001). Origin and subsurface history of geothermal water of Murtazabad area, Pakistan: Isotopic evidence. Applied Radiation and Isotopes, 55, 731–736.

    Article  CAS  Google Scholar 

  • Ahmad, N., Uddin, Z., Rehman, Ju., Bakhsh, M., & Ullah, H. (2020). Evaluation of radon concentration and heavy metals in drinking water and their health implications to the population of Quetta, Balochistan, Pakistan. International Journal of Environmental Analytical Chemistry, 100, 32–41.

    Article  CAS  Google Scholar 

  • Ahmad, S. T., Almuhsin, I. A., & Hamad, W. M. (2021). Radon activity concentrations in Jale and Mersaid warm water springs in Koya District, Kurdistan Region-Iraq. Journal of Radioanalytical and Nuclear Chemistry, 328, 753–768.

    Article  CAS  Google Scholar 

  • Amrani, D., Cherouati, D. E., & Cherchali, M. E. H. (2000). Groundwater radon measurements in Algeria. Journal of Environmental Radioactivity, 51, 173–180.

    Article  CAS  Google Scholar 

  • Bakht, M.S. (2000). An overview of geothermal resources of Pakistan. In: Proceedings world geothermal congress, pp. 77–83

  • Bertolo, A., & Bigliotto, C. (2004). Radon concentration in waters of geothermal Euganean Basin: Veneto, Italy. Radiation Protection Dosimetry, 111, 355–358.

    Article  CAS  Google Scholar 

  • Choubey, V. M., Bist, K. S., Saini, N. K., & Ramola, R. C. (1999). Relation between soil-gas radon variation and different lithotectonic units, Garhwal Himalaya, India. Applied Radiation and Isotopes, 51, 587–592.

    Article  CAS  Google Scholar 

  • Choubey, V. M., Mukherjee, P. K., Bajwa, B. S., & Walia, V. (2007). Geological and tectonic influence on water–soil–radon relationship in Mandi-Manali area, Himachal Himalaya. Environmental Geology, 52, 1163–1171.

    Article  CAS  Google Scholar 

  • Cothern, C. R. (2014). Radon, radium, and uranium in drinking water. CRC Press.

    Book  Google Scholar 

  • Coward, M., Butler, R., Khan, M. A., & Knipe, R. (1987). The tectonic history of kohistan and its implications for himalayan structure. Journal of the Geological Society, 144, 377–391.

    Article  Google Scholar 

  • Duenas, C., Fernandez, M. C., Enrıquez, C., Carretero, J., & Liger, E. (1998). Natural radioactivity levels in Andalusian spas. Water Research, 32, 2271–2278.

    Article  CAS  Google Scholar 

  • Erees, F., Aytas, S., Sac, M., Yener, G., & Salk, M. (2007). Radon concentrations in thermal waters related to seismic events along faults in the Denizli Basin, Western Turkey. Radiation Measurements, 42, 80–86.

    Article  CAS  Google Scholar 

  • Erőss, A., Mádl-Szőnyi, J., Surbeck, H., Horváth, Á., Goldscheider, N., & Csoma, A. É. (2012). Radionuclides as natural tracers for the characterization of fluids in regional discharge areas, Buda Thermal Karst, Hungary. Journal of Hydrology, 426, 124–137.

    Article  Google Scholar 

  • Ezzulddin, S. K., & Mansour, H. H. (2020). Radon and radium activity concentration measurement in drinking water resources in Kurdistan Region-Iraq. Journal of Radioanalytical and Nuclear Chemistry, 324, 963–976.

    Article  CAS  Google Scholar 

  • Hamzah, Z., Saat, A., & Kassim, M. (2011). Determination of radon activity concentration in hot spring and surface water using gamma spectrometry technique. The Malaysian Journal of Analytical Sciences, 15, 288–294.

    Google Scholar 

  • Haroon, H., & Muhammad, S. (2022). Spatial distribution of radon concentration and annual effective dose for age groups from groundwater in Mirpur District Pakistan. Groundwater for Sustainable Development. https://doi.org/10.1016/j.gsd.2022.100734

    Article  Google Scholar 

  • Hochstein, M. P., & Regenauer-Lieb, K. (1998). Heat generation associated with collision of two plates: The Himalayan geothermal belt. Journal of Volcanology and Geothermal Research, 83, 75–92. https://doi.org/10.1016/S0377-0273(98)00018-3

    Article  CAS  Google Scholar 

  • Horvath, A., Bohus, L. O., Urbani, F., Marx, G., Piroth, A., & Greaves, E. D. (2000). Radon concentrations in hot spring waters in northern Venezuela. Journal of Environmental Radioactivity, 47, 127–133.

    Article  CAS  Google Scholar 

  • Hungr, O., Leroueil, S., & Picarelli, L. (2014). The Varnes classification of landslide types, an update. Landslides, 11, 167–194.

    Article  Google Scholar 

  • Javed, M., Zahoor, S., Sabar, H., Haq, I., & Babar, M. (2012). Thermophilic bacteria from the hot springs of Gilgit (Pakistan). J Anim Plant Sci, 22, 83–87.

    CAS  Google Scholar 

  • Jobbágy, V., Stroh, H., Marissens, G., & Hult, M. (2019). Comprehensive study on the technical aspects of sampling, transporting and measuring radon-in-water. Journal of Environmental Radioactivity, 197, 30–38.

    Article  Google Scholar 

  • Kandari, T., Aswal, S., Prasad, M., Bourai, A. A., & Ramola, R. C. (2016). Estimation of annual effective dose from radon concentration along Main Boundary Thrust (MBT) in Garhwal Himalaya. Journal of Radiation Research and Applied Sciences, 9, 228–233.

    Article  CAS  Google Scholar 

  • Kansal, S., & Mehra, R. (2015). Evaluation and analysis of 226Ra, 232Th and 40K and radon exhalation rate in the soil samples for health risk assessment. International Journal of Low Radiation, 10, 1–13.

    Article  Google Scholar 

  • Kazmi, A. H., & Jan, M. Q. (1997). Geology and tectonics of Pakistan. Graphic publishers.

    Google Scholar 

  • Khan, F., Khattak, S. A., Wazir, Z., & Waqas, M. (2021). Spatial distribution of radon concentrations in Balakot-Bagh (B–B) Fault Line and adjoining areas, Lesser Himalayas, North Pakistan. Environmental Earth Sciences, 80, 1–6.

    Article  Google Scholar 

  • Khan, M. A., Khattak, N. U., & Hanif, M. (2022). Radon emission along faults: A case study from district Karak, Sub-Himalayas, Pakistan. Journal of Radioanalytical and Nuclear Chemistry, 331, 1995–2003. https://doi.org/10.1007/s10967-022-08283-4

    Article  CAS  Google Scholar 

  • Khattak, N., Khan, M., Shah, M., & Ali, N. (2014). Radon concentration in drinking water sources of the region adjacent to a tectonically active Karak Thrust, southern Kohat Plateau, Khyber Pakhtunkhwa, Pakistan. Journal of Radioanalytical Nuclear Chemistry, 302, 315–329.

    Article  CAS  Google Scholar 

  • Knutsson, G., Olofsson, B.O. (2002), Radon content in groundwater from drilled wells in the Stockholm region of Sweden.

  • Kumar, A., Singh, D., Semwal, P., Kandari, T., Singh, K., Joshi, M., & Singh, P. (2022). Comparative study of two different water sources in the aspect of radiological exposure to the local population of Bageshwar, India. Journal of Radioanalytical and Nuclear Chemistry. https://doi.org/10.1007/s10967-022-08238-9

    Article  Google Scholar 

  • Leaney, F. W., & Herczeg, A. L. (2006). A rapid field extraction method for determination of radon-222 in natural waters by liquid scintillation counting. Limnology and Oceanography: Methods, 4, 254–259.

    CAS  Google Scholar 

  • Li, X., Zheng, B., Wang, Y., & Wang, X. (2006). A study of daily and seasonal variations of radon concentrations in underground buildings. Journal of Environmental Radioactivity, 87, 101–106.

    Article  CAS  Google Scholar 

  • Mallongi, A., Rauf, A. U., Daud, A., Hatta, M., Al-Madhoun, W., Amiruddin, R., Stang, S., Wahyu, A., & Astuti, R. D. (2022). Health risk assessment of potentially toxic elements in Maros karst groundwater: A Monte Carlo simulation approach Geomatics. Natural Hazards and Risk, 13, 338–363.

    Article  Google Scholar 

  • Martins, L., Pereira, A., Oliveira, A., SanchesFernandes, L. F., & Pacheco, F. A. (2019). A new framework for the management and radiological protection of groundwater resources: The implementation of a portuguese action plan for radon in drinking water and impacts on human health. Water, 11, 760.

    Article  CAS  Google Scholar 

  • Muhammad, S., & Ahmad, K. (2020). Heavy metal contamination in water and fish of the Hunza River and its tributaries in Gilgit–Baltistan: Evaluation of potential risks and provenance. Environmental Technology and Innovation, 20, 101159. https://doi.org/10.1016/j.eti.2020.101159

    Article  CAS  Google Scholar 

  • Muhammad, S., Ullah, R., Turab, S. A., Khan, M. Y., Khattak, N. U., & Khan, M. A. (2020). Radon concentration in drinking water and soil after the September 24, 2019, Mw 5.8 earthquake, Mirpur, Azad Jammu, and Kashmir: An evaluation for potential risk. Environmental Science and Pollution Research, 27, 32628–32636.

    Article  CAS  Google Scholar 

  • NRC. (1999). National Research Council (NRC), Risk assessment of radon in drinking water. National Academies Press.

    Google Scholar 

  • Nugraha, E. D., et al. (2021). Radon activity concentrations in natural hot spring water: Dose assessment and health perspective. International Journal of Environmental Research and Public Health, 18, 920.

    Article  CAS  Google Scholar 

  • Pant, D., Kessari, T., Rishi, M., Sharma, D. A., Thakur, N., Singh, G., Sangwan, P., Jaryal, A., Sinha, U. K., & Tripathi, R. M. (2020). Spatiotemporal distribution of dissolved radon in uranium impacted aquifers of southwest Punjab. Journal of Radioanalytical Nuclear Chemistry, 323, 1237–1249.

  • Piao, C., Tian, M., Gao, H., Gao, Y., Ruan, J., Wu, L., Gao, G., Yi, L., & Liu, J. (2020). Effects of radon from hot springs on lymphocyte subsets in peripheral blood. Dose-Response, 18, 1559325820902338.

    Article  CAS  Google Scholar 

  • Prasad, G., Prasad, Y., Gusain, G. S., & Ramola, R. C. (2008). Measurement of radon and thoron levels in soil, water and indoor atmosphere of Budhakedar in Garhwal Himalaya, India. Radiation Measurements, 43, S375–S379. https://doi.org/10.1016/j.radmeas.2008.04.050

    Article  CAS  Google Scholar 

  • Qiao, Z., Wang, G., Fu, H., & Hu, X. (2022). Identification of groundwater radon precursory anomalies by critical slowing down theory: a case study in Yunnan Region, Southwest China. Water, 14, 541.

    Article  CAS  Google Scholar 

  • Rani, S., Kansal, S., Singla, A. K., & Mehra, R. (2021). Radiological risk assessment to the public due to the presence of radon in water of Barnala district, Punjab, India. Environmental Geochemistry and Health, 43, 5011–5024.

    Article  CAS  Google Scholar 

  • Rey, J. F., Goyette, S., Gandolla, M., Palacios, M., Barazza, F., & GoyettePernot, J. (2022). Long-term impacts of weather conditions on indoor radon concentration measurements in Switzerland. Atmosphere, 13, 92.

    Article  Google Scholar 

  • Roba, C. A., Niţă, D., Cosma, C., Codrea, V., & Olah, Ş. (2012). Correlations between radium and radon occurrence and hydrogeochemical features for various geothermal aquifers in Northwestern Romania. Geothermics, 42, 32–46.

    Article  CAS  Google Scholar 

  • Selvasekarapandian, S., Sivakumar, R., Manikandan, N., Ragjunath, V. M., Kannan, V., & Rajaram, S. (2002). A study on the radon concentration in water in Coonoor, India. Journal of Radioanalytical and Nuclear Chemistry, 252, 345–347.

    Article  CAS  Google Scholar 

  • Shakoor, H., Jehan, N., Khan, S., & Khattak, N. U. (2022). Investigation of radon sources, health hazard and risks assessment for children using analytical and geospatial techniques in District Bannu (Pakistan). International Journal of Radiation Biology, 98, 1176–1184.

    Article  CAS  Google Scholar 

  • Shizuma, K., Haruna, Y., Iwatani, K., & Hasai, H. (1994). Radon concentration in ground water over Hiroshima prefecture. 1. Development of the method for the radon measurement and its application to the ground water in Higashi-Hiroshima City. Hiroshima Daigaku Kogakubu Kenkyu Hokoku, 43, 1–10.

    CAS  Google Scholar 

  • Sola, P., Srisuksawad, K., Loaharojanaphand, S., Permnamtip, V., Issarapan, P., & Thummagarun, L. (2013). Radon concentration in air, hot spring water, and bottled mineral water in one hot spring area in Thailand. Journal of Radioanalytical and Nuclear Chemistry, 297, 183–187.

    Article  CAS  Google Scholar 

  • Somlai, K., Tokonami, S., Ishikawa, T., Vancsura, P., Gáspár, M., Jobbágy, V., Somlai, J., & Kovács, T. (2007). 222Rn concentrations of water in the Balaton Highland and in the southern part of Hungary, and the assessment of the resulting dose. Radiation Measurements, 42, 491–495.

    Article  CAS  Google Scholar 

  • Strydom, T., Nel, J. M., Nel, M., Petersen, R. M., & Ramjukadh, C. L. (2021). The use of Radon (Rn222) isotopes to detect groundwater discharge in streams draining Table Mountain Group (TMG) aquifers. Water SA, 47, 194–199.

    Article  CAS  Google Scholar 

  • Tabar, E., Kumru, M. N., Saç, M. M., İçhedef, M., Bolca, M., & Özen, F. (2013). Radiological and chemical monitoring of Dikili geothermal waters, Western Turkey. Radiation Physics and Chemistry, 91, 89–97.

    Article  CAS  Google Scholar 

  • Tabar, E., & Yakut, H. (2014). Radon measurements in water samples from the thermal springs of Yalova basin, Turkey. Journal of Radioanalytical and Nuclear Chemistry, 299, 311–319.

    Article  CAS  Google Scholar 

  • Tade, R. S., More, M. P., Nangare, S. N., & Patil, P. O. (2021). Graphene quantum dots (GQDs) nanoarchitectonics for theranostic application in lung cancer. Journal of Drug Targeting. https://doi.org/10.1080/1061186X.2021.1987442

    Article  Google Scholar 

  • Tanner, A.B., Adams, J.A.S., Lowder, W.M. (1964). The natural radiation environment University of Chicago, Chicago:161–190

  • Ullah, F., Muhammad, S., & Ali, W. (2022). Radon concentration and potential risks assessment through hot springs water consumption in the Gilgit and Chitral, Northern Pakistan. Chemosphere, 287, 132323. https://doi.org/10.1016/j.chemosphere.2021.132323

    Article  CAS  Google Scholar 

  • UNSCEAR. (2000). United Nations Scientific Committee on the effects of atomic radiations. The General Assembly with Scien-tific Annex.

    Google Scholar 

  • USEPA (1999) National recommended water quality criteria-correction, United States Environmental Protection Agency EPA 822-7-99-001:pp 25

  • Valentin, J. (2007). International Commission on Radiological Protection. The 2007 recommendations of the international commission on radiological protection Annals of the ICRP. ICRP Publication, 103, 2–4.

    Google Scholar 

  • Vitz, E. (1991). Toward a standard method for determining waterborne radon. Health Physics, 60, 817–829.

    Article  CAS  Google Scholar 

  • Yalim, H.A., Sandıkçıoğlu, A., Ertuğrul, O., Yıldız, A. (2012). Determination of the relationship between radon anomalies and earthquakes in well waters on the Aksehir-Simav Fault System in Afyonkarahisar province, Turkey

  • Yoon, J. Y., Lee, J.-D., Joo, S. W., & Kang, D. R. (2016). Indoor radon exposure and lung cancer: A review of ecological studies. Annals of Occupational and Environmental Medicine, 28, 1–9.

    Article  Google Scholar 

  • Yousafzai, A., Eckstein, Y., & Dahl, P. S. (2010). Hydrochemical signatures of deep groundwater circulation in a part of the Himalayan foreland basin. Environmental Earth Sciences, 59, 1079–1098. https://doi.org/10.1007/s12665-009-0099-0

    Article  CAS  Google Scholar 

  • Zhang, Y. (2021). Image classification-based groundwater pollution prediction and regional economic collaborative innovation. Arabian Journal of Geosciences, 14, 1–11.

    Article  CAS  Google Scholar 

  • Zmazek, B., Todorovski, L., Živčić, M., Džeroski, S., Vaupotič, J., & Kobal, I. (2006). Radon in a thermal spring: Identification of anomalies related to seismic activity. Applied Radiation and Isotopes, 64, 725–734.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of the Higher Education Commission, Pakistan, for project Ref # 20-17208/NRPU/R&D/HEC/2021 is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said Muhammad.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

All authors reviewed and approved the final manuscript.

Consent for publication

All authors are approved for this publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad, S., Haq, A. Spatial distribution of radon contamination in hot springs water and its cancer and non-cancer risks in the Hunza-Nagar valley, Pakistan. Environ Geochem Health 45, 5829–5840 (2023). https://doi.org/10.1007/s10653-023-01596-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01596-7

Keywords

Navigation