Skip to main content
Log in

Lower Permian Gondwana sequence of Rajhara (Daltonganj Coalfield), Damodar Basin, India: floristic and geochemical records and their implications on marine ingressions and depositional environment

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Early Permian floral diversity and palaeodepositional environment of the Lower Permian Rajhara sequence of Damodar Basin have been studied based on mega-, microfossil and geochemical proxies. Even though Gondwana sediments are generally considered as fluvio-lacustrine deposits, recent studies indicate marine inundations with patchy records. Here in the present study, an attempt has been made to address the changeover from fluviatile to shallow marine conditions and also to address the palaeodepositional aspects. Luxuriant vegetation during deposition of the Lower Barakar Formation generated thick coal seams. The macroplant fossil assemblage shows Glossopteridales, Cordaitales and Equisetales comprising one palynoassemblage with the dominance of bisaccate pollen grains having glossopterid affinities. However, Lycopsids are absent in the megafloral record and are represented in megaspore assemblage. The present floral assemblage led to envisage the presence of dense forest with swampy conditions and prevalence of warm and humid climate during the deposition of Barakar sediments. Correlation with the coeval Indian assemblages and those from other Gondwanan continents also supports an Artinskian age and reveals a stronger affinity with flora of Africa than that of South America. Biomarker analysis reveals low pristane/phytane values (0.30–0.84), noticeable absence of hopanoid triterpenoids and long-chain n-alkanes that is attributed to the obliteration of organic compounds and subsequent alteration of composition due to thermal effect. The high chemical index of alteration, A–CN–K plot and PIA also suggest severe denudation under a warm/humid climate. The V/Al2O3 and P2O5/Al2O3 indicated freshwater–near-shore conditions. However, signature of possible marine influence is identified from Th/U and Sr/Ba ratios resulted from the eustatic fluctuations during Permian.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aggarwal, N., Agrawal, S., & Thakur, B. (2019). Palynofloral, palynofacies and carbon isotope of Permian coal deposits from the Godavari Valley Coalfield, South India: Insights into the age, palaeovegetation and palaeoclimate. International Journal of Coal Geology, 214, 103285.

    Article  CAS  Google Scholar 

  • Armstrong-Altrin, J. S., Lee, Y. I., Verma, S. P., & Ramasamy, S. (2004). Geochemistry of sandstones from the Upper Miocene Kudankulam formation, southern India: Implication for provenance, weathering and tectonic setting. Journal of Sedimentary Research, 74(2), 285–297.

    Article  CAS  Google Scholar 

  • Balme, B. E. (1995). Fossil in situ spores and pollen grains: An annotated catalogue. Review of Palaeobotany and Palynology, 87, 81–323.

    Article  Google Scholar 

  • Bandhyopadhyay, S. K. (1996). Scope of analog study in understanding some aspects of paleodrainage and coal seam formation in Lower Gondwana Basin of peninsular India. Geological Survey of India Special Publication, 20, 69–73.

    Google Scholar 

  • Banerjee, N. N., Ghosh, B., & Das, A. (2002). Trace metals in Indian coals (pp. 3–5). Allied Publishers Limited.

    Google Scholar 

  • Bechtel, A., Gruber, W., Sachsenhofer, R. F., Gratzer, R., & Püttmann, W. (2001). Organic geochemical and stable isotopic investigation of coals formed in low–lying and raised mires within the Eastern Alps (Austria). Organic Geochemistry, 32, 1289–1310. https://doi.org/10.1016/S0146-6380(01)00101-2

    Article  CAS  Google Scholar 

  • Bhargava, O. N. (2008). Palaeozoic successions of the Indian plate. Memoirs Geological Society of India, 74, 209–244.

    Google Scholar 

  • Bhattacharjee, J., Ghosh, K. K., & Bhattacharya, B. (2018). Petrography and geochemistry of sandstone–mudstone from Barakar Formation (early Permian), Raniganj Basin, India: Implications for provenance, weathering and marine depositional conditions during Lower Gondwana sedimentation. Geological Journal, 53(3), 1102–1122.

    Article  CAS  Google Scholar 

  • Bhattacharya, B., Bandyopadhyay, S., Mahapatra, S., & Banerjee, S. (2012). Record of tide wave influence on coal bearing Permian Barakar Formation, Raniganj Basin, India. Sedimentary Geology, 267–268, 25–35.

    Article  Google Scholar 

  • Bhattacharya, B., & Banerjee, P. P. (2015). Record of Permian Tethyan transgression in eastern India: A reappraisal of the Barren Measures Formation, West Bokaro Coalfield. Marine and Petroleum Geology, 67, 170–179.

    Article  Google Scholar 

  • Bhattacharya, B., & Banerjee, S. (2014). Chondrites isp. indicating Late Palaeozoic Anoxia in eastern peninsular India. The Scientific World Journal, 2014, 434672.

    Article  Google Scholar 

  • Bhattacharya, B., Bhattacharjee, J., Banerjee, S., Bandyopadhyay, S., & Das, R. (2016). Seismites in Permian Barakar Formation, Raniganj Basin, India: Implications on Lower Gondwana basin evolution. Arabian Journal of Geosciences, 9, 1–13.

    Article  CAS  Google Scholar 

  • Boardman, D. R., Iannuzzi, R., Souza, P. A., & Cunha Lopes, R. (2012). Paleobotanical and palynological analysis of Faxinal Coalfield (lower Permian, Rio Bonito Formation, Paran´a Basin), Rio Grande Do Sul, Brazil. International Journal of Coal Geology, 102, 12–25.

    Article  CAS  Google Scholar 

  • Boruah, A., & Ganapathi, S. (2015). Microstructure and pore system analysis of Barren Measures shale of Raniganj field, India. Journal of Natural Gas Science and Engineering, 26, 427–437. https://doi.org/10.1016/j.jngse.2015.05.042

    Article  CAS  Google Scholar 

  • Cao, W., Jiang, S., Li, S., Zhang, W., Wang, G., Chen, H., Zhao, F., Lu, L., & Jiang, Y. (2019). Contrastive analysis of gravity and magnetic anomalies between North China Craton and Indian Shield. Geological Journal, 54(2), 1090–1106.

    Article  Google Scholar 

  • Casshyap, S. M., & Tewari, R. C. (1988). Depositional models and tectonic evolution of Gondwana basins of peninsular India. The Palaeobotanist, 36, 59–66.

    Google Scholar 

  • Césari, S. N., & Gutiérrez, P. R. (2001). Palynostratigraphy of Upper Paleozoic sequences in Central-Western Argentina. Palynology, 24, 113–146.

    Google Scholar 

  • Chaloner, W. G., & Lacey, W. S. (1973). The distribution of Late Palaeozoic floras. Special Papers in Palaeontology, 12, 271–289.

    Google Scholar 

  • Chandra, K., Mishra, C. S., Samanta, U., Gupta, A., & Mehrotra, K. L. (1994). Correlation of different maturity parameters in the Ahmedabad-Mehsana block of the cambay basin. Organic Geochemistry, 21, 313–321. https://doi.org/10.1016/0146-6380(94)90193-7

    Article  CAS  Google Scholar 

  • Chandra, S. (1992). Changing patterns of the Permian Gondwana vegetation. Palaeobotanist, 40, 73–100.

    Google Scholar 

  • Chandra, S., & Chandra, A. (1987). Vegetational changes and their climatic implications in coal-bearing Gondwana. Palaeobotanist, 36, 74–86.

    Google Scholar 

  • Chandra, S., & Surange, K. R. (1979). Revision of the Indian species of Glossopteris. Birbal Sahni Insitute of Palaeobotany, Lucknow, Monograph, 2, 1–291.

    Google Scholar 

  • Chatterjee, G. C., & Ghosh, P. K. (1970). Tectonic framework of peninsular Gondwanas of India. Records Geological Survey of India, 98, 1–15.

    Google Scholar 

  • Chen, J., Guo, Y., Wei, H. B., Liu, H. Y., Ma, R. Y., Xiao, Z., & Feng, Z. (2022). Evaluation of chemical weathering proxies by comparing drilled cores versus outcrops and weathering history during the Permian-Triassic transition. Global and Planetary Change, 214, 103855.

    Article  Google Scholar 

  • Chen, L., Li, C., Chaloner, W. G., Beerling, D. J., Sun, Q., Collinson, M. E., & Mitchell, P. L. (2001). Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change. American Journal of Botany, 88, 1309–1315. https://doi.org/10.2307/3558342

    Article  CAS  Google Scholar 

  • Ciesielczuk, J., G´orka, M., Fabia´nska, M. J., Misz-Kennan, M., & Jura, D. (2021). The influence of heating on the carbon isotope composition, organic geochemistry and petrology of coal from the Upper Silesian Coal Basin (Poland): An experimental and field study. International Journal of Coal Geology, 241, 103749. https://doi.org/10.1016/j.coal.2021.103749

    Article  CAS  Google Scholar 

  • Clift, P. D., Wan, S., & Blusztajn, J. (2014). Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: A review of competing proxies. Earth Science Review, 130, 86–102.

    Article  CAS  Google Scholar 

  • Cox, R., Low, D. R., & Cullers, R. L. (1995). The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica Et Cosmochimica Acta, 59, 2919–2940.

    Article  CAS  Google Scholar 

  • Dai, S., Jiang, Y., Ward, C., Gu, L., Seredin, V. V., Liu, H., Zhou, D., Wang, X., Sun, Y., Zou, J., & Ren, D. (2012). Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. International Journal of Coal Geology, 98, 10–40. https://doi.org/10.1016/j.coal.2012.03.003

    Article  CAS  Google Scholar 

  • Dasgupta, P. (2006). Facies characteristics of Talchir Formation, Jharia Basin India. Implication for initiation of Gondwana sedimentation. Sedimentary Geology, 185, 59–78. https://doi.org/10.1016/j.sedgeo.2005.11.013

    Article  Google Scholar 

  • Davydov, V. (2014). Warm water benthic foraminifera document the Pennsylvanian-Permian warming and cooling events—the record from the Western Pangea tropical shelves. Palaeogeography, Palaeoclimatology, Palaeoecology, 414, 284–295.

    Article  Google Scholar 

  • Dhannoun, H. Y., & Al-Dlemi, A. M. S. (2013). The relation between Li, V, P2O5, and Al2O3 contents in marls and mudstones as indicators of environment of deposition. Arabian Journal of Geosciences, 6, 817–823. https://doi.org/10.1007/s12517-011-0399-z

    Article  CAS  Google Scholar 

  • Fan, Y., Qu, H., Wang, H., Yang, X., & Feng, Y. (2012). The application of trace elements analysis to identifying sedimentary media environment: A case study of Late Triassic strata in the middle part of western Ordos Basin. China Geology, 39(2), 382–389.

    CAS  Google Scholar 

  • Fedo, C. M., Nesbitt, H. W., & Young, G. M. (1995). Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921–924.

    Article  CAS  Google Scholar 

  • Feistmantel, O. (1886). The fossil flora of the Gondwana System IV. The fossil flora of some of the Coalfields in the Western Bengal. Memoirs of the Geological Survey of India. Palaeontologia Indica, 4(2), 1–66.

    Google Scholar 

  • Fielding, C. R., Frank, T. D., Birgenheier, L. P., Rygel, M. C., Jones, A. T., & Roberts, J. (2008). Stratigraphic record and facies associations of the late Paleozoic age in Eastern Australia (New South Wales and Queesland). Geological Society of America, 441, 41–57.

    Google Scholar 

  • Fox, C. S. (1934). The lower Gondwana coalfields of India. Indian Geological Survey Memoirs, 59, 386.

    Google Scholar 

  • Fu, J., Li, S., Xu, L., & Niu, X. (2018). Paleo–sedimentary environmental restoration and its significance of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Petroleum Exploration and Development, 45, 998–1008. https://doi.org/10.1016/S1876-3804(18)30104-6

    Article  Google Scholar 

  • Ganju, P.N. (1955). The petrology of coals of the Daltonganj Coalfield. Proceedings of the National Academy of SciencesSection B, 42, 14–26.

  • Ghosh, S. K. (2003). First record of marine bivalves from the Talchir Formation of the Satpura Gondwana basin, India: Palaeobiogeographic implications. Gondwana Research, 6(2), 312–320. https://doi.org/10.1016/S1342-937X(05)70980-1

    Article  Google Scholar 

  • Ghosh, S. C., Nandi, A., Ahmed, G., & Roy, D. K. (1994). Study of Permo-Triassic boundary of Gondwana sequence of Raniganj Basin, India. Proceeding Voloume Gondwana Nine, 2, 179–194.

    Google Scholar 

  • Goldberg, K., & Humayun, M. (2010). The applicability of the Chemical Index of Alteration as a paleoclimatic indicator: An example from the Permian of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 293(1–2), 175–183.

    Article  Google Scholar 

  • Gopinathan, P., Santosh, M.S., Dileepkumar, V.G., Subramani, T., Reddy, R., Masto, R.E., & Maity, S. (2022b). Geochemical, mineralogical and toxicological characteristics of coal fly ash and its environmental impacts. Chemosphere, 307(1), 135710. https://doi.org/10.1016/j.chemosphere.2022.135710.

  • Gopinathan, P., Jha, M., Singh, A.K., Mahato, A., Subramani, T., Singh, P.K. & Singh V. (2022a). Geochemical characteristics, origin and forms of sulphur distribution in the Talcher coalfield, India. Fuel, 316, 123376. https://doi.org/10.1016/j.fuel.2022.123376.

  • Gopinathan, P., Singh, A. K., Singh, P. K., & Jha, M. (2022c). Sulphur in Jharia and Raniganj coalfields: Chemical fractionation and its environmental implications. Environmental Research, 204(D), 112382. https://doi.org/10.1016/j.envres.2021.112382

    Article  CAS  Google Scholar 

  • Goswami, S. (2008). Marine influence and incursion in the Gondwana basins of Orissa, India: A review. Palaeoworld, 17(1), 21–32.

    Article  Google Scholar 

  • Goswami, S., Das, K., Sahoo, M., Bal, S., Pradhan, S., Singh, K. J., & Saxena, A. (2018b). Biostratigraphy and floristic evolution of coal swamp floras of a part of Talcher Basin, India: A window on a Permian temperate ecosystem. Arabian Journal of Geosciences, 11(17), 1–14.

    Article  Google Scholar 

  • Goswami, S., Saxena, A., Singh, K. J., Chandra, S., & Cleal, C. J. (2018a). An appraisal of the Permian palaeobiodiversity and geology of the Ib-River Basin, eastern coastal area, India. Journal of Asian Earth Science, 157, 283–301. https://doi.org/10.1016/j.jseaes.2017.09.006

    Article  Google Scholar 

  • Goswami, S., Singh, K. J., Saxena, A., Wang, J., Chandra, S., & Gupta, S. (2022). Witnessing floral evolution: A case study from Barakar formation in Lajkura colliery, Ib-river coalfield, Mahanadi Basin. India. Historical Biology, 34(1), 30–41.

    Article  Google Scholar 

  • Gupta, A. (1999). Early Permian Palaeoenvironment in Damodar Valley Coalfields, India: An Overview. Gondwana Research, 2(2), 149–165. https://doi.org/10.1016/S1342-937X(05)70140-4

    Article  Google Scholar 

  • Gupta, A. (2000). Role of storm in Ramgarh and West Bokaro Coal Belds and its implication in adjacent peninsular Gondwana Coalfields. India. Gondwana Research, 3(4), 529–544. https://doi.org/10.1016/S1342-937X(05)70759-0

    Article  Google Scholar 

  • Harnois, L. (1988). The CIW index: A new chemical index of weathering. Sedimentary Geology, 55. 319–322. https://doi.org/10.1016/0037-0738(88)90137-6.

  • Hughes, T. W. H. (1872). The Daltonganj Coalfield. Memoirs Geological Survey of India, 8, 325–346.

    Google Scholar 

  • Jha, N., & Aggarwal, N. (2011). Palynological correlation of coal-bearing horizons in Gundala area, Godavari Graben. India. Journal of Earth System Science, 120(4), 663–679.

    Article  Google Scholar 

  • Jha, N., Tewari, R., & Saleem, M. (2006). Occurrence of megaspores in the Lower Gondwana sediments of the Gundala area, Godavari Graben, AP, India. Journal of Palaeontological Society of India, 51, 37–41.

    Google Scholar 

  • Jian, X., Guan, P., Zhang, W., & Feng, F. (2013). Geochemistry of Mesozoic and Cenozoic sediments in the northern Qaidam basin, northeastern Tibetan Plateau: Implications for provenance and weathering. Chemical Geology, 360–361, 74–88. https://doi.org/10.1016/j.chemgeo.2013.10.011

    Article  CAS  Google Scholar 

  • Johnsson, M. J. (1993). The system controlling the composition of clastic sediments. In M. J. Johnsson & A. Basu (Eds.), processes controlling the composition of clastic sediments (Vol. 284, pp. 1–20). NY: Geological Society of America Special Paper.

    Chapter  Google Scholar 

  • Jones, B., & Manning, D. C. (1994). Comparison of Geochemical Indices Used for the Interpretation of PaleoRedox Conditions in Ancient Mudstones. Chemical Geology, 111(1–4), 111–129.

    Article  Google Scholar 

  • Kamen-Kaye, M. (1978). Permian to Tertiary faunas and paleogeography: Somalia, Kenya, Tanzania, Mozambique, Madagascar, South Africa. Journal of Petroleum Geology, 1, 79–101. https://doi.org/10.1111/j.1747-5457.1978.tb00602.x

    Article  Google Scholar 

  • Ketris, M. P., & Yudovich, Y. E. (2009). Estimations of Clarkes for carbonaceous biolithes: World average for trace element contents in black shales and coals. International Journal of Coal Geology, 78, 135–148. https://doi.org/10.1016/j.coal.2009.01.002

    Article  CAS  Google Scholar 

  • Khanehbad, M., Moussavi-Harami, R., Mahboubi, A., & Nadjafi, M. (2012). Geochemistry of carboniferous shales of the Sardar Formation, east central Iran: Implication for provenance, paleoclimate and paleo-oxygenation conditions at a passive continental margin. Geochemistry International, 50, 777–790. https://doi.org/10.1134/S0016702912090029

    Article  CAS  Google Scholar 

  • Kumar, G. (1997). Geology of Arunachal Pradesh (p. 217). Geological Society of India.

    Google Scholar 

  • La Touche, T. H. D. (1891). Note on the geology of Lushai Hills. Records Geological Survey of India, 24, 83–141.

    Google Scholar 

  • Laskar, B., Mitra, N.D., & De, A.K. (1976). Lower Gondwana basins of peninsular India – their sedimentation and history. Workshop in exploration of coal, C.M.P.D.I

  • Lavina, E. L., & da Lopes, R. C. (1987). A transgress marinha do Permian Inferior e aevoluceopaleogeografica do SupergrupoTubarlo no estado do Rio Grande do Sul. Paula Coutiana, 1, 51–103.

    Google Scholar 

  • Li, Z. X., Wang, M. Z., Yu, J. F., Han, M. L., Li, J. T., & Lv, D. W. (2006). Sequence stratigraphy of Late Paleozoic coal-bearing measures and the transgressive coal-formed features in Ordos Basin. Acta Sedimentologica Sinica, 24(6), 834–840.

    Google Scholar 

  • Lindström, S., & McLoughlin, S. (2007). Synchronous palynofloristic extinction and recovery after the end-Permian event in the Prince Charles Mountains, Antarctica: Implications for palynofloristic turnover across Gondwana. Review of Palaeobotany and Palynology, 145(1–2), 89–122.

    Article  Google Scholar 

  • Liu, D., Kong, X., Zhang, C., Wang, J., Yang, D., Liu, X., Wang, X., & Song, Y. (2018). Provenance and geochemistry of Lower to Middle Permian strata in the southern Junggar and Turpan basins: A terrestrial record from mid-latitude NE Pangea. Palaeogeography, Palaeoclimatology, Palaeoecology, 495, 259–277.

    Article  Google Scholar 

  • López-Gamundí, O. R. (1997). Glacial–postglacial transition in the late Paleozoic basins 46 of southern South America. In I. P. Martini (Ed.), Late glacial and postglacial environmental changes, OUP (pp. 147–168). Oxford.

    Google Scholar 

  • Maithy, P. K. (1969). Palaeobotany and stratigraphy of the coal bearing beds of the Daltonganj Coalfield. Bihar. Palaeobotanist, 17(3), 265–274.

    Google Scholar 

  • Mathews, R. P., Chetia, R., Agrawal, S., Singh, B. D., Singh, P. K., Singh, V. P., & Singh, A. (2020b). Early palaeogene climate variability based on n–alkane and stable carbon isotopic composition evidenced from the Barsingsar Lignite–bearing sequence of Rajasthan. Journal of the Geological Society of India, 95(3), 255–262. https://doi.org/10.1007/s12594-020-1423-2

    Article  CAS  Google Scholar 

  • Mathews, R. P., Pillai, S. S. K., Manoj, M. C., & Agrawal, S. (2020a). Palaeoenvironmental reconstruction and evidence of marine influence in Permian coal–bearing sequence from Lalmatia Coalmine (Rajmahal Basin), Jharkhand, India: A multi–proxy approach. International Journal of Coal Geology, 224, 10348. https://doi.org/10.1016/j.coal.2020.103485

    Article  CAS  Google Scholar 

  • Mazumder, S., Tep, B., Pangtey, K. K. S., Das, K. K., & Mitra, D. S. (2017). Probable existence of a Gondwana transcontinental rift system in western India: Implications in hydrocarbon exploration in Kutch and Saurashtra offshore: A GIS-based approach. Journal of Earth System Science, 126(6), 1–21.

    Article  Google Scholar 

  • Mc Loughlin, S. (1992). Permian sphenophytes from the Collie and Perth Basins, Western Australia. Review of Palaeobotany and Palynology, 75, 153–182. https://doi.org/10.1016/0034-6667(92)90015-9

    Article  Google Scholar 

  • Mc Loughlin, S. (2022). Late Permian flora of the Little River Coal Measures, north-eastern Australia. Geophytology, 50(1&2), 37–48.

    Google Scholar 

  • McLennan, S. M. (1993). Weathering and global denudation. Journal of Geology, 101, 295–303.

    Article  Google Scholar 

  • Mishra, D. P., Singh, V. P., Saxena, A., Uhl, D., Murthy, S., Pandey, B., & Kumar, R. (2022). Palaeoecology and depositional setting of Early Permian (Artinskian) mire based on a multi-proxy study at the Jagannath coal mine (Talcher Coalfield), Mahanadi Basin, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 601, 111–124.

    Article  Google Scholar 

  • Mishra, S., Aggarwal, N., & Jha, N. (2017). Palaeoenvironmental change across the Permian-Triassic boundary inferred from palynomorph assemblages (Godavari Graben, South India). Palaeobiodiversity and Palaeoenvironments, 98(2), 177–204. https://doi.org/10.1007/s12549-017-0302-3

    Article  Google Scholar 

  • Mukherjee, S. N., Banerjee, B., & Majumdar, B. K. (1992). Transformation of coal mineral matter in relation to coal metamorphism in the Rajhara sub-basin, Daltonganj Coalfield India. International Journal of Coal Geology, 21(3), 197–216.

    Article  CAS  Google Scholar 

  • Mukhopadhyay, A., Adhikari, S., Roy, S.P., Bhattacharya, S., Millici, R.C., Warwick, P.D., & Landis, E.R. (1997). Eustacy, climate, tectonics, sedimentary environments, and the formation of Permian coal measures in the Sohagpur Coalfield, Madhya Pradesh, India. Proceedings of National Seminar on Recent Advances In. Geology of Coal and Lignite Basins of India, pp. 55–57.

  • Mukhopadhyay, G., Mukhopadhyay, S. K., Roychowdhury, M., & Parui, P. K. (2010). Stratigraphic correlation between different Gondwana Basins of India. Journal of the Geological Society of India, 76, 251–266. https://doi.org/10.1007/s12594-010-0097-6

    Article  Google Scholar 

  • Murthy, S., Awatar, R., & Gautam, S. (2014). Palynostratigraphy of Permian succession in the Mand-Raigarh Coalfield, Chhattisgarh. India. Journal of Earth System Science, 123(8), 1879–1893. https://doi.org/10.1007/s12040-014-0498-9

    Article  CAS  Google Scholar 

  • Murthy, S., Chakraborthi, B., & Roy, M. D. (2010). Palynodating of subsurface sediments, Raniganj Coalfield, Damodar Basin, West Bengal. Journal of Earth System Science, 119(5), 701–710. https://doi.org/10.1007/s12040-010-0049-y

    Article  Google Scholar 

  • Murthy, S., Mendhe, V. A., Uhl, D., Mathews, R. P., Mishra, V. K., & Gautam, S. (2021). Palaeobotanical and biomarker evidence for Early Permian (Artinskian) wildfire in the Rajmahal Basin India. Journal of Palaeogeography, 10(1), 1–21. https://doi.org/10.1186/s42501-021-00084-2

    Article  Google Scholar 

  • Nakazawa, K., & Kapoor, H.M. (1977). Correlation of the marine Permian in the Tethys and Gondwana. Proceedings IV Gondwana Symposium (Calcutta, India) 2, Hindusthan Publishing Cooperation (India), pp. 409–419.

  • Nesbitt, H. W., & Young, G. M. (1982). Early Proterzoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.

    Article  CAS  Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic consideration. Geochimica Et Cosmochimica Acta, 48, 1523–1534.

    Article  CAS  Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1989). Formation and diagenesis of weathering profiles. Journal of Geology, 97, 129–147.

    Article  CAS  Google Scholar 

  • Nyambe, I., & Utting, J. (1997). Stratigraphy and palynostratigraphy Karoo super group (Permian and Triassic) Mid Zambesi Velly southern Zambia. Journal of African Earth Sciences, 24, 563–583.

    Article  Google Scholar 

  • Parker, A. (1970). An index of weathering for silicate rocks. Geological Magazine, 107, 501–504.

    Article  CAS  Google Scholar 

  • Patra, S., Dirghangi, S. S., Rudra, A., Dutta, S., Ghosh, S., Varma, A. K., Shome, D., & Kalpana, M. S. (2018). Effect of thermal maturity on biomarker distributions in Gondwana coals from the Satpura and Damodar valley basins, India. International Journal of Coal Geology, 196, 63–81. https://doi.org/10.1016/j.coal.2018.07.002

    Article  CAS  Google Scholar 

  • Peters, K. E., Walters, C. C., & Moldowan, J. M. (2005). The biomarker guide, 2: Biomarkers and Isotopes in the petroleum exploration and earth history. Cambridge University Press.

    Google Scholar 

  • Phipps, D., & Playford, G. (1984). Laboratory techniques for extraction of palynomorphs from sediments. In Papers of the Department of Geology, University of Queensland, 11(1), 1–23.

  • Pillai, S. S. K., Agnihotri, D., Gautam, S., & Tewari, R. (2018). Glossopteris flora from the Pali Formation, Johilla Coalfield, South Rewa Gondwana Basin, Madhya Pradesh, India: Palynological evidence for a late Permian age. Journal of the Palaeontological Society of India, 63, 53–72.

    Google Scholar 

  • Pillai, S. S. K., Mathews, R. P., Murthy, S., Goswami, S., Agrawal, S., Sahoo, M., & Singh, R. (2020). Palaeofloral investigation based on morphotaxonomy, palynomorphs, biomarkers and stable isotope from Lalmatia coal mine of Rajmahal Lower Gondwana Basin, Godda District, Jharkhand, India: An inclusive empirical study. Journal of the Palaeontological Society of India, 96, 43–57. https://doi.org/10.1007/s12594-020-1503-3

    Article  CAS  Google Scholar 

  • Ram-Awatar, Mehrotra, R. C., Srivastava, R., Yadav, K. C., & Gautam, S. (2013). Further contributions to the palynological studies showing marine incursion in the Talchir Formation, Manendragarh, Koriya district, Chhattisgarh. SciTech, 1, 3–7.

    Google Scholar 

  • Rieu, R., Allen, P. A., Plötze, M., & Pettke, T. (2007). Climatic cycles during a Neoproterozoic “snowball” glacial epoch. Geology, 35, 299–302.

    Article  CAS  Google Scholar 

  • Rigby, J. F. (1969). A reevaluation of the Pre-Gondwana Carboniferous Flora. Anais Da Academia Brasileira De Cieˆncias, 41, 393–413.

    Google Scholar 

  • Rohmer, M., Bisseret, P., & Neunlist, S. (1992). The hopanoids, procaryotictriterpenoids and precursors of ubiquitous molecular fossils. In J. M. Moldowan, P. Albrecht, & R. P. Philp (Eds.), Biological markers in sediments and petroleum (pp. 1–17). Prentice Hall, Englewood Cliffs.

    Google Scholar 

  • Sahoo, M., Aggarwal, N., & Goswami, S. (2020b). Palynological investigation of the Lower Gondwana outcrop near Gopalprasad, Odisha, India: An inference on the age, palaeovegetation and palaeoclimate. Journal of the Palaeontological Society of India, 65(1), 27–35.

    Google Scholar 

  • Sahoo, M., Goswami, S., Aggarwal, N., & Pillai, S. S. K. (2020a). Palaeofloristics of Lower Gondwana Exposure near Kumunda Village, Angul District, Talcher Basin, Odisha, India: A comprehensive study on megafloral and palynofloral assemblages. Journal of the Geological Society of India, 95(3), 241–254. https://doi.org/10.1007/s12594-020-1422-3

    Article  CAS  Google Scholar 

  • Santosh, M. S., Purushotham, S., Gopinathan, P., Guna, V., Dileepkumar, V. G., Kumar, M., & Reddy, N. (2023). Natural sub-bituminous coal as filler enhances mechanical, insulation and flame retardant properties of coir–polypropylene bio-composites. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-023-01489-9

    Article  Google Scholar 

  • Sarana, S., & Kar, R. (2011). Effect of igneous intrusive on coal microconstituents: Study from an Indian Gondwana Coalfield. International Journal of Coal Geology, 85, 161–167.

    Article  CAS  Google Scholar 

  • Sastry, M. V. A., & Shah, S. C. (1964). Permian marine transgression in peninsular India. Proceedings XXII International Geological Congress, New Delhi, 9, 139–150.

    Google Scholar 

  • Saxena, A., Murthy, S., & Singh, K. J. (2019). Floral diversity and environment during the early Permian: a case study from Jarangdih Colliery, East Bokaro Coalfield, Damodar Basin India. Palaeobiodiversity and Palaeoenvironment, 100(1), 33–50. https://doi.org/10.1007/s12549-019-003175-6

    Article  Google Scholar 

  • Saxena, A., Singh, K. J., Cleal, C. J., Chandra, S., Goswami, S., & Shabbar, S. (2018). Development of the Glossopteris flora and its end Permian demise in the Tatapani-Ramkola Coalfield, Son-Mahanadi Basin, India. Geological Journal, 54, 2472–2494. https://doi.org/10.1002/gj.3307

    Article  CAS  Google Scholar 

  • Saxena, A., Singh, K. J., Shabbar, H., & Prakash, A. (2016). Macrofloral assemblage from the Early Permian Barakar Formation of Singrauli Coalfield, Son-Mahanadi Basin. India. Palaeobotanist, 65(1), 139–150.

    Google Scholar 

  • Seifert, W., & Moldowan, J. M. (1980). The effect of thermal stress on source–rock quality as measured by hopane stereochemistry. Physics and Chemistry of the Earth, 12, 229–237. https://doi.org/10.1016/0079-1946(79)90107-1

    Article  CAS  Google Scholar 

  • Semkiwa, P., Kalkeuth, W., Utting, J., Mayagilo, F., & Mpanju Hagemann, F. (1998). The geology, petrology, palynology and geochemistry of Permian coal basin in Tanzania. Namwele Mkomolo, Muze Galula Coalfields. International Journal of Coal Geology, 36, 63–110.

    Article  CAS  Google Scholar 

  • Shao, L., Wang, X., Wang, D., Li, M., Wang, S., Li, Y., Shao, K., Zhang, C., Gao, C., Dong, D., Cheng, A., Lu, J., Ji, C., & Gao, D. (2020). Sequence stratigraphy, paleogeography, and coal accumulation regularity of major coal-accumulating periods in China. International Journal of Coal Science & Technology, 7(2), 240–262.

    Article  CAS  Google Scholar 

  • Sharafi, M., Rodríguez-Tovar, F. J., Bayet-Goll, A., & Richianio, S. (2021b). Ichnofabric analysis of shallow to deep marine Carboniferous sediments, from the southern Paleotethys margin, Alborz Basin (northern Iran): Approaching autogenic and allogenic environmental controls. Historical Biology., 34(10), 2000–2019.

    Article  Google Scholar 

  • Sharafi, M., Rodríguez-Tovar, F. J., Janočko, J., Bayet-Goll, A., Mohammadi, M., & Khanehbad, M. (2021a). Environmental significance of trace fossil assemblages in a tide-wave-dominated shallow-marine carbonate system (Lower Cretaceous), northern Neo-Tethys margin, Kopet-Dagh Basin. Iran. International Journal of Earth Sciences., 111, 103–126.

    Article  Google Scholar 

  • Shen, M., Dai, S., Nechaev, V. P., French, D., Graham, I. T., Liu, S., Chekryzhob, I. Y., Tarasenko, I. A., & Zhang, S. (2023). Provenance changes for mineral matter in the latest Permian coals from western Guizhou, southwestern China, relative to tectonic and volcanic activity in the Emeishan Large Igneous Province and Paleo-Tethys region. Gondwana Research, 113, 71–88.

    Article  CAS  Google Scholar 

  • Singh, K. J., Murthy, S., Saxena, A., & Shabbar, H. (2017). Permian macro-and miofloral diversity, palynodating and palaeoclimate implications deduced from the coal-bearing sequences of Singrauli coalfield, Son-Mahanadi Basin, central India. Journal of Earth System Science, 126(2), 1–16.

    Article  Google Scholar 

  • Smith, A. G., & Hallam, A. (1970). The fit of the southern continents. Nature, 225(5228), 139–144.

    Article  Google Scholar 

  • Souza, P. A., & Marques Toigo, M. (2005). Progress on the palynostratigraphy of the Permian strata in Rio Grande do Sul State, Paran´a Basin, Brazil. Anais Da Academia Brasileira De Ciências, 77, 353–365.

    Article  Google Scholar 

  • Srivastava, A. K. (1992). Plant fossil assemblages from the Barakar Formation of Raniganj Coalfield. India. Palaeobotanist, 39(3), 281–302.

    Google Scholar 

  • Srivastava, A. K., Saxena, A., & Agnihotri, D. (2012). Morphological and stratigraphical significance of lower Gondwana plant fossils of Mohpani Coalfield, Satpura Gondwana Basin, Madhya Pradesh. Journal of the Geological Soceity of India, 80, 676–684. https://doi.org/10.1007/s12594-012-0193-x

    Article  Google Scholar 

  • SrivastavaSarate, S. C. O. S. (1989). Palynostratigraphy of lower Gondwana sediments from Shobhapur block, Patherkhera Coalfield, Madhya Pradesh. Palaeobotanist, 37, 125–133.

    Google Scholar 

  • Stojanović, K., & Životić, D. (2013). Comparative study of Serbian Miocene coals — Insights from biomarker composition. International Journal of Coal Geology, 107, 3–23. https://doi.org/10.1016/j.coal.2012.09.009

    Article  CAS  Google Scholar 

  • Sun, S., Chen, A., Chen, H., Hou, M., Yang, S., Xu, S., & Ogg, J. G. (2022). Early Permian chemical weathering indices and paleoclimate transition linked to the end of the coal-forming episode, Ordos Basin, North China Craton. Palaeogeography, Palaeoclimatology, Palaeoecology, 585, 110743.

    Article  Google Scholar 

  • Taylor, S. R., & Mc Lennan, S. M. (1985). The continental crust: Its composition and evolution. Blackwell.

    Google Scholar 

  • Tewari, R. C. (1998). Channel sandstone bodies in fluvial Permian-Triassic Gondwana Succession of peninsular India. Journal of the Geological Society of India, 51, 747–754.

    Google Scholar 

  • Tewari, R. (2007). The Glossopteris flora from Kamptee Coalfield Wardha Basin, Maharashtra, India. Palaeontographica B, 277, 43–64. https://doi.org/10.1127/palb/277/2007/43

    Article  Google Scholar 

  • Tewari, R., Agnihotri, D., Pillai, S. S. K., & Bernardes-de-Oliveira, M. E. C. (2012). An Early Permian Glossopteris flora from the Umrer Coalfield, Wardha Basin, Maharashtra, India. Alcheringa, 36, 355–371.

    Article  Google Scholar 

  • Tewari, R., Joshi, A., & Agnihotri, D. (2017). The Glossopteris flora of Manuguru area, Godavari Graben, Telangana India. Palaeobotanist, 66(1), 17–36.

    Google Scholar 

  • Tewari, R., Kumar, M., & Prakash, N. (2009). Early cretaceous megaspores from sher river section, Sehora, Satpura Gondwana Basin, Madhya Pradesh India. Phytomorphology, 59(1 and 2), 7–20.

    Google Scholar 

  • Tewari, R., & Maheshwari, H. K. (1992). Megaspores from early Permian of India. Geophytology, 21, 1–19.

    Google Scholar 

  • Tewari, R., & Srivastava, A. K. (1996). Plant fossils from the Barakar Formation, Jharia Coalfield, Bihar. Geophytology, 25, 35–39.

    Google Scholar 

  • Tiwari, R. S., & Tripathi, A. (1988). Palynological zones and their climatic inference in the coal- bearing Gondwana of Peninsular India. Palaeobotanist, 36, 87–101.

    Google Scholar 

  • Tiwari, R. S., & Tripathi, A. (1992). Marker Assemblage-Zones of spores and pollen species through Gondwana Palaeozoic and Mesozoic sequence in India. Palaeobotanist, 40, 194–236.

    Google Scholar 

  • Veevers, J. J. (2004). Gondwanaland from 650–500 Ma assembly through 320 Ma merger in Pangea to 185–100 Ma breakup: Supercontinental tectonics via stratigraphy and radiometric dating. Earth Science Reviews, 68, 1–132. https://doi.org/10.1016/j.earscirev.2004.05.002

    Article  Google Scholar 

  • Veevers, J. J. (2006). Updated Gondwana (Permian–Cretaceous) earth history of Australia. Gondwana Research, 9(3), 231–260.

    Article  Google Scholar 

  • Veevers, J. J., & Tewari, R. C. (1995). Gondwana master basin of Peninsular India between tethys and the interior of gondwanaland Province of Pangea. Geological Society of America Memoirs, 187, 1–72.

    Google Scholar 

  • Visser, J. N. J. (1995). Post–glacial Permian stratigraphy and geography of southern and central Africa: Boundary conditions for climatic modeling. Palaeogeography, Palaeoclimatology, Palaeoecology, 118, 213–243.

    Article  Google Scholar 

  • Wood, G. D., Gabriel, A. M., & Lawson, J. C. (1996). Chapter 3: Palynological techniques-processing and microscopy. In J. Jansonius & D. C. McGregor (Eds.), Palynology: Principles and applications dallas (Vol. 1, pp. 29–50). American Association of Stratigraphic Palynologists Foundation.

    Google Scholar 

  • Xiong, X., & Xiao, J. (2011). Geochemical Indicators of Sedimentary Environments: A Summary. Earth and Environment, 39, 405–414.

    CAS  Google Scholar 

  • Xu, Z. J., Liu, L. F., Liu, B., Wang, T. G., Zhang, Z. H., Wu, K. J., Feng, C. Y., Dou, W. C., Wang, Y., & Shu, Y. (2019). Geochemical characteristics of the Triassic Chang 7 lacustrine source rocks, Ordos Basin, China: Implications for paleoenvironment, petroleum potential and tight oil occurrence. Journal of Asian Earth Science, 178, 112–138. https://doi.org/10.1016/j.jseaes.2018.03.005

    Article  Google Scholar 

  • Yang, J. H., Cawood, P. A., Du, Y. S., Li, W., & Yan, J. (2016). Reconstructing Early Permian tropical climates from chemical weathering indices. Geological Society of American Bulletin, 128, 739–751.

    Article  CAS  Google Scholar 

  • Zdravkov, A., Stefanova, M., Worobiec, E., Bechtel, A., Marinov, S., & Kortenski, J. (2020). Implications for peat formation in Maritsa-West Basin SE Bulgaria: Insights from organic petrology, palynology and biomarker assemblage. International Journal of Coal Geology, 222, 103447. https://doi.org/10.1016/j.coal.2020.103447

    Article  CAS  Google Scholar 

  • Zhao, M. Y., & Zheng, Y. F. (2015). The intensity of chemical weathering: Geochemical constraints from marine detrital sediments of Triassic age in South China. Chemical Geology, 391, 111–122.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are greatly indebted to the Director, Birbal Sahni Institute of Palaeosciences, Lucknow, for providing the necessary facilities to carry out the research. We also thank the Director, Central Coalfield Limited, for permission to collect samples. The author (SK), INSPIRE Fellow, is indebted to the Department of Science and Technology (DST), Government of India, for the research grant (IF200461). We are highly grateful to the three reviewers for their constructive comments and suggestions, which substantially improved the quality of the manuscript. We are thankful to Mr. Ishwar Chandra Rahi, Mr. Amrit Pal Singh Chaddha and Mr. D. S. Bhist, BSIP, for their technical support.

Funding

The author (SK) received the research grant (IF200461) from Department of Science and Technology (DST), Government of India.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. SP, MM, RP and SM were responsible for conceptualization, data curation, formal analysis, investigation, methodology, writing the original draft, validation, visualization, and reviewing and editing; MS, AS, AS, SP and SK were involved in data curation, validation, visualization, and reviewing and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sankar Suresh Kumar Pillai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pillai, S.S.K., Manoj, M.C., Mathews, R.P. et al. Lower Permian Gondwana sequence of Rajhara (Daltonganj Coalfield), Damodar Basin, India: floristic and geochemical records and their implications on marine ingressions and depositional environment. Environ Geochem Health 45, 6923–6953 (2023). https://doi.org/10.1007/s10653-023-01517-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01517-8

Keywords

Navigation