Skip to main content

Advertisement

Log in

Parent and alkylated polycyclic aromatic hydrocarbon emissions from coal seam fire at Wuda, Inner Mongolia, China: characteristics, spatial distribution, sources, and health risk assessment

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The Wuda coalfield in Inner Mongolia is a vital coal base in China, and it is the hardest-hit area for coal fires (spontaneous combustion of coal seams and coal gangue). Using gas chromatography–mass spectrometry, this work tested the concentration and analyzed the characteristics, distribution, sources, and health risks of polycyclic aromatic compounds (PACs) in the surface soil of the Wuda District, including the coal mine, coal fire, agricultural, and background areas. The soil of coal mine and coal fire area were heavily polluted with PACs, with mean concentrations of 9107 and 3163 µg kg−1, respectively, considerably higher than those in the agricultural (1232 µg kg−1) and background areas (710 µg kg−1). Alkyl polycyclic aromatic hydrocarbons (APAHs) were the dominant pollutants among these PACs, accounting for 60–81%. Alkyl naphthalenes and alkyl phenanthrenes are the primary pollutants in APAHs, accounting for 80–90% of the total amounts. Additionally, using the positive matrix factorization method, it can be concluded that the primary PAC sources are petrogenic sources, coal and biomass combustion, coal fires, and vehicle emissions. Finally, according to the cancer risk values of 16 PAHs, only the coal mine area showed a potential cancer risk. However, this result lacks a risk assessment of APAHs and underestimates the actual risk. The results of this study improved the understanding of PAC pollution in coal fire and surrounding areas and provided a reference for environmental and health risk investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Agarwal, R., Singh, D., Chauhan, D. S., & Singh, K. P. (2006). Detection of coal mine fires in the Jharia coal field using NOAA/AVHRR data. Journal of Geophysics and Engineering, 3, 212–218.

    Article  Google Scholar 

  • Agudelo-Castañeda, D. M., & Teixeira, E. C. (2014). Seasonal changes, identification and source apportionment of PAH in PM 1.0. Atmospheric Environment, 96, 186–200.

    Article  Google Scholar 

  • Augusto, S., Maguas, C., Matos, J., Pereira, M. J., & Branquinho, C. (2010). Lichens as an integrating tool for monitoring PAH atmospheric deposition: A comparison with soil, air and pine needles. Environmental Pollution, 158, 483–489.

    Article  CAS  Google Scholar 

  • Bell, F. G., Bullock, S. E. T., Halbich, T. F. J., & Lindsay, P. (2001). Environmental impacts associated with an abandoned mine in the Witbank Coalfield, South Africa. International Journal of Coal Geology, 45, 216.

    Article  Google Scholar 

  • Biache, C., Mansuy-Huault, L., & Faure, P. (2014). Impact of oxidation and biodegradation on the most commonly used polycyclic aromatic hydrocarbon (PAH) diagnostic ratios: Implications for the source identifications. Journal of Hazardous Materials, 267, 31–39.

    Article  CAS  Google Scholar 

  • Bozlaker, A., Muezzinoglu, A., & Odabasi, M. (2008). Atmospheric concentrations, dry deposition and air-soil exchange of polycyclic aromatic hydrocarbons (PAHs) in an industrial region in Turkey. Journal of Hazardous Materials, 153, 1093–1102.

    Article  CAS  Google Scholar 

  • Callen, M. S., Iturmendi, A., & Lopez, J. M. (2014). Source apportionment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons by a PMF receptor model. Assessment of potential risk for human health. Environmental Pollution, 195, 167–177.

    Article  CAS  Google Scholar 

  • Chao, S., Liu, J., Chen, Y., Cao, H., & Zhang, A. (2019). Implications of seasonal control of PM2.5-bound PAHs: An integrated approach for source apportionment, source region identification and health risk assessment. Environmental Pollution, 247, 685–695.

    Article  CAS  Google Scholar 

  • Chen, W., Wu, X., Zhang, H., Sun, J., Liu, W., Zhu, L., Li, X., Tsang, D. C. W., Tao, S., & Wang, X. (2017). Contamination characteristics and source apportionment of methylated PAHs in agricultural soils from Yangtze River Delta, China. Environmental Pollution, 230, 927–935.

    Article  CAS  Google Scholar 

  • Chen, X., Xu, D. D., Qian, Y. H., Hong, X. P., & Liang, H. D. (2022). Pollution characteristics and toxicity assessment of PAHs in coal gangue from mine area in Huaibei. China Environmental Science, 42, 753–760. in Chinese.

    CAS  Google Scholar 

  • Dachs, J., Thomas, R., Glenn, C. L., IV., Gigliotti, P. B., Totten, L. A., Nelson, E. D., Franz, T. P., & Eisenreich, S. J. (2002). Processes driving the short-term variability of polycyclic aromatic hydrocarbons in the Baltimore and northern Chesapeake Bay atmosphere, USA. Atmospheric Environment, 36, 2281–2295.

    Article  CAS  Google Scholar 

  • Engle, M. A., Olea, R. A., O’Keefe, J. M. K., Hower, J. C., & Geboy, N. J. (2013). Direct estimation of diffuse gaseous emissions from coal fires: Current methods and future directions. International Journal of Coal Geology, 112, 164–172.

    Article  CAS  Google Scholar 

  • Fallahtafti, S., Rantanen, T., Brown, R. S., Snieckus, V., & Hodson, P. V. (2012). Toxicity of hydroxylated alkyl-phenanthrenes to the early life stages of Japanese medaka (Oryzias latipes). Aquatic Toxicology, 106–107, 56–64.

    Article  Google Scholar 

  • Gangopadhyay, P. K., Lahiri-Dutt, K., & Saha, K. (2006). Application of remote sensing to identify coalfires in the Raniganj Coalbelt, India. International Journal of Applied Earth Observation and Geoinformation, 8, 188–195.

    Article  Google Scholar 

  • Garrison, T., Hower, J. C., Fryar, A. E., & D’Angelo, E. (2016). Water and soil quality at two eastern-Kentucky (USA) coal fires. Environmental Earth Sciences, 75(7), 574.

    Article  Google Scholar 

  • Glasspool, I. (2000). A major fire event recorded in the mesofossils and petrology of the Late Permian, Lower Whybrow coal seam, Sydney Basin, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 164, 357–380.

    Article  Google Scholar 

  • Golzadeh, N., Barst, B. D., Baker, J. M., Auger, J. C., & McKinney, M. A. (2021). Alkylated polycyclic aromatic hydrocarbons are the largest contributor to polycyclic aromatic compound concentrations in traditional foods of the Bigstone Cree Nation in Alberta. Canada. Environmental Pollution, 275, 116625.

    Article  CAS  Google Scholar 

  • Gopinathan, P., Jha, M., Singh, A. K., Mahato, A., Subramani, T., Singh, P. K., & Singh, V. (2022a). Geochemical characteristics, origin and forms of sulphur distribution in the Talcher coalfield. India. Fuel, 316, 123376.

    Article  CAS  Google Scholar 

  • Gopinathan, P., Santosh, M. S., Dileepkumar, V. G., Subramani, T., Reddy, R., Masto, R. E., & Maity, S. (2022b). Geochemical, mineralogical and toxicological characteristics of coal fly ash and its environmental impacts. Chemosphere, 307, 135710.

    Article  CAS  Google Scholar 

  • Gopinathan, P., Singh, A. K., Singh, P. K., & Jha, M. (2022c). Sulphur in Jharia and Raniganj coalfields: Chemical fractionation and its environmental implications. Environmental Research, 204, 112382.

    Article  CAS  Google Scholar 

  • Heffern, E. L., & Coates, D. A. (2004). Geologic history of natural coal-bed fires, Powder River basin, USA. International Journal of Coal Geology, 59, 25–47.

    Article  CAS  Google Scholar 

  • Hindersmann, B., & Achten, C. (2018). Urban soils impacted by tailings from coal mining: PAH source identification by 59 PAHs, BPCA and alkylated PAHs. Environmental Pollution, 242, 1217–1225.

    Article  CAS  Google Scholar 

  • Hindersmann, B., Forster, A., & Achten, C. (2020). Novel and specific source identification of PAH in urban soils: Alk-PAH-BPCA index and “V”-shape distribution pattern. Environmental Pollution, 257, 113594.

    Article  CAS  Google Scholar 

  • Ho, K. F., Ho, S. S. H., Lee, S. C., Cheng, Y., Chow, J. C., Watson, J. G., Louie, P. K. K., & Tian, L. (2009). Emissions of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs) in the Shing Mun Tunnel, Hong Kong. Atmospheric Environment, 43, 6343–6351.

    Article  CAS  Google Scholar 

  • Honda, M., & Suzuki, N. (2020). Toxicities of polycyclic aromatic hydrocarbons for aquatic animals. International Journal of Environmental Research and Public Health, 17, 1363.

    Article  CAS  Google Scholar 

  • Hong, X., Liang, H., Chen, Y., Liu, Y., & Shi, Y. (2018). Distribution of fluorine in the surface dust of Wuda coal base, Inner Mongolia of Northern China. Journal of Geochemical Exploration, 188, 390–397.

    Article  CAS  Google Scholar 

  • Hong, X. P., Liang, H. D., Lv, S., Jia, Y. R., Zhao, T. C., & Liang, W. L. (2017). Mercury emissions from dynamic monitoring holes of underground coal fires in the Wuda Coalfield, Inner Mongolia, China. International Journal of Coal Geology, 181, 78–86.

    Article  CAS  Google Scholar 

  • Hong, X., Yang, K., & Liang, H. (2021). Characterization of acidity and sulfate in dust obtained from the Wuda coal base, northern China: Spatial distribution and pollution assessment. Environmental Science and Pollution Research, 28, 33219–33230.

    Article  CAS  Google Scholar 

  • Hower, J. C., O’Keefe, J. M. K., Henke, K. R., Wagner, N. J., Copley, G., Blake, D. R., Garrison, T., Oliveira, M. L. S., Kautzmann, R. M., & Silva, L. F. O. (2013). Gaseous emissions and sublimates from the Truman Shepherd coal fire, Floyd County, Kentucky: A re-investigation following attempted mitigation of the fire. International Journal of Coal Geology, 116–117, 63–74.

    Article  Google Scholar 

  • Huang, H. F., Xing, X. L., Zhang, Z. Z., Qi, S. H., Yang, D., Yuen, D. A., Sandy, E. H., Zhou, A. G., & Li, X. Q. (2016). Polycyclic aromatic hydrocarbons (PAHs) in multimedia environment of Heshan coal district, Guangxi: Distribution, source diagnosis and health risk assessment. Environmental Geochemistry and Health, 38, 1169–1181.

    Article  CAS  Google Scholar 

  • Huang, Q., Zhu, Y., Wu, F., & Zhang, Y. (2021). Parent and alkylated polycyclic aromatic hydrocarbons in surface sediments of mangrove wetlands across Taiwan Strait, China: Characteristics, sources and ecological risk assessment. Chemosphere, 265, 129168.

    Article  CAS  Google Scholar 

  • Idowu, O., Semple, K. T., Ramadass, K., O’Connor, W., Hansbro, P., & Thavamani, P. (2020). Analysis of polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives in soils of an industrial heritage city of Australia. Science of the Total Environment, 699, 1–12.

    Article  Google Scholar 

  • Jiang, Y., Yves, U. J., Sun, H., Hu, X., Zhan, H., & Wu, Y. (2016). Distribution, compositional pattern and sources of polycyclic aromatic hydrocarbons in urban soils of an industrial city, Lanzhou, China. Ecotoxicology and Environmental Safety, 126, 154–162.

    Article  CAS  Google Scholar 

  • Kang, H. J., Lee, S. Y., & Kwon, J. H. (2016). Physico-chemical properties and toxicity of alkylated polycyclic aromatic hydrocarbons. Journal of Hazardous Materials, 312, 200–207.

    Article  Google Scholar 

  • Kannan, K., Johnson-Restrepo, B., Yohn, S. S., Giesy, J. P., & Long, D. T. (2005). Spatial and temporal distribution polycyclic aromatic hydrocarbons sediments from Michigan inland lakes. Environmental Science and Technology, 39, 4700–4706.

    Article  CAS  Google Scholar 

  • Krzyszczak, A., & Czech, B. (2021). Occurrence and toxicity of polycyclic aromatic hydrocarbons derivatives in environmental matrices. Science of the Total Environment, 788, 147738.

    Article  CAS  Google Scholar 

  • Kuenzer, C., & Stracher, G. B. (2012). Geomorphology of coal seam fires. Geomorphology, 138, 209–222.

    Article  Google Scholar 

  • Kuenzer, C., Zhang, J., Sun, Y., Jia, Y., & Dech, S. (2012). Coal fires revisited: The Wuda coal field in the aftermath of extensive coal fire research and accelerating extinguishing activities. International Journal of Coal Geology, 102, 75–86.

    Article  CAS  Google Scholar 

  • Kwon, H. O., & Choi, S. D. (2014). Polycyclic aromatic hydrocarbons (PAHs) in soils from a multi-industrial city, South Korea. Science of the Total Environment, 470–471, 1494–1501.

    Article  Google Scholar 

  • Larsen, R. K., & Baker, J. E. (2003). Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environmental Science and Technology, 37, 1873–1881.

    Article  CAS  Google Scholar 

  • Laumann, S., Micic, V., Kruge, M. A., Achten, C., Sachsenhofer, R. F., Schwarzbauer, J., & Hofmann, T. (2011). Variations in concentrations and compositions of polycyclic aromatic hydrocarbons (PAHs) in coals related to the coal rank and origin. Environmental Pollution, 159, 2690–2697.

    Article  CAS  Google Scholar 

  • Li, C., Liang, H., Chen, Y., Bai, J., & Cui, Y. (2017a). Distribution of mercury content in dusts of coal base, Wuda, China. China Environmental Science, 192, 132–141.

    Google Scholar 

  • Li, C., Liang, H., Liang, M., Chen, Y., & Zhou, Y. (2018). Mercury emissions flux from various land uses in old mining area, Inner Mongolia, China. Journal of Geochemical Exploration, 192, 132–141.

    Article  CAS  Google Scholar 

  • Li, Y., Long, L., Ge, J., Yang, L. X., Cheng, J. J., Sun, L. X., Lu, C., & Yu, X. Y. (2017b). Presence, distribution and risk assessment of polycyclic aromatic hydrocarbons in rice–wheat continuous cropping soils close to five industrial parks of Suzhou, China. Chemosphere, 184, 753–761.

    Article  CAS  Google Scholar 

  • Lian, J., Ren, Y., Chen, J., Wang, T., & Cheng, T. (2009). Distribution and source of alkyl polycyclic aromatic hydrocarbons in dustfall in Shanghai, China: The effect on the coastal area. Journal of Environmental Monitoring, 11, 187–192.

    Article  CAS  Google Scholar 

  • Liang, M., Liang, H., Rao, Z., & Hong, X. (2019). Characterization of polycyclic aromatic hydrocarbons in urban-rural integration area soil, North China: Spatial distribution, sources and potential human health risk assessment. Chemosphere, 234, 875–884.

    Article  CAS  Google Scholar 

  • Liang, M., Liang, Y., Liang, H., Rao, Z., & Cheng, H. (2018a). Polycyclic aromatic hydrocarbons in soil of the backfilled region in the Wuda coal fire area, Inner Mongolia, China. Ecotoxicology and Environment Safety, 165, 434–439.

    Article  CAS  Google Scholar 

  • Liang, M., Liang, Y., Liang, H., Rao, Z., & Cheng, H. (2018b). Polycyclic aromatic hydrocarbons in soil of the backfilled region in the Wuda coal fire area, Inner Mongolia, China. Ecotoxicology and Environmental Safety, 165, 434–439.

    Article  CAS  Google Scholar 

  • Liu, F., Xu, Y., Liu, J., Liu, D., Li, J., Zhang, G., Li, X., Zou, S., & Lai, S. (2013). Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) to a coastal site of Hong Kong, South China. Atmospheric Environment, 69, 265–272.

    Article  CAS  Google Scholar 

  • Liu, Y., Gao, P., Su, J., da Silva, E. B., de Oliveira, L. M., Townsend, T., Xiang, P., & Ma, L. Q. (2019). PAHs in urban soils of two Florida cities: Background concentrations, distribution, and sources. Chemosphere, 214, 220–227.

    Article  CAS  Google Scholar 

  • Ma, L. L., Chu, S. G., Wang, X. T., Cheng, H. X., Liu, X. F., & Xu, X. B. (2005). Polycyclic aromatic hydrocarbons in the surface soils from outskirts of Beijing, China. Chemosphere, 58, 1355–1363.

    Article  CAS  Google Scholar 

  • Maliszewska-Kordybach, B. (1996). Polycyclic aromatic hydrocarbons in agricultural soils in Poland: Preliminary proposals for criteria to evaluate the level of soil contamination. Applied Geochemistry, 11, 121–127.

    Article  Google Scholar 

  • Manoli, E., & Samara, C. (1999). Polycyclic aromatic hydrocarbons in natural waters: Sources, occurrence and analysis. TRAC Trends in Analytical Chemistry, 18, 417–428.

    Article  CAS  Google Scholar 

  • Misz-Kennan, M., & Fabiańska, M. (2010). Thermal transformation of organic matter in coal waste from Rymer Cones (Upper Silesian Coal Basin, Poland). International Journal of Coal Geology, 81, 343–358.

    Article  CAS  Google Scholar 

  • Mu, J., Wang, J., Jin, F., Wang, X., & Hong, H. (2014). Comparative embryotoxicity of phenanthrene and alkyl-phenanthrene to marine medaka (Oryzias melastigma). Marine Pollution Bulletin, 85, 505–515.

    Article  CAS  Google Scholar 

  • O’Keefe, J. M., Henke, K. R., Hower, J. C., Engle, M. A., Stracher, G. B., Stucker, J. D., Drew, J. W., Staggs, W. D., Murray, T. M., Hammond, M. L., 3rd., Adkins, K. D., Mullins, B. J., & Lemley, E. W. (2010). CO(2), CO, and Hg emissions from the Truman Shepherd and Ruth Mullins coal fires, eastern Kentucky, USA. Science of the Total Environment, 408, 1628–1633.

    Article  CAS  Google Scholar 

  • Pone, J. D. N., Hein, K. A. A., Stracher, G. B., Annegarn, H. J., Finkleman, R. B., Blake, D. R., McCormack, J. K., & Schroeder, P. (2007). The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coalfields of South Africa. International Journal of Coal Geology, 72, 124–140.

    Article  CAS  Google Scholar 

  • Qian, Y., Liang, Y., Cao, Q., Wang, Z., Shi, Y., & Liang, H. (2021). Concentration and speciation of mercury in atmospheric particulates in the Wuda coal fire area, Inner Mongolia, China. Environmental Science and Pollution Research, 29(3), 3879–3887.

    Article  Google Scholar 

  • Qian, Y., Wang, T., Hong, X., Luo, Z., & Liang, H. (2022a). Quantitative method of alkyl polycyclic aromatic hydrocarbons in surface soils of coal mines. Journal of Chinese Mass Spectrometry Society, 43, 168–177. in Chinese.

    CAS  Google Scholar 

  • Qian, Y., Xu, Z., Hong, X., Luo, Z., Gao, X., Tie, C., & Liang, H. (2022b). Alkylated polycyclic aromatic hydrocarbons are the largest contributor to polycyclic aromatic compound concentrations in the topsoil of Huaibei Coalfield, China. International Journal of Environmental Research and Public Health, 19, 12733.

    Article  CAS  Google Scholar 

  • Qian, Y., Yuan, K., Hong, X., Xu, Z., & Liang, H. (2022c). Contamination characteristics of alkyl polycyclic aromatic hydrocarbons in dust and topsoil collected from Huaibei Coalfield, China. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-022-01365-y

    Article  Google Scholar 

  • Saha, M., Takada, H., & Bhattacharya, B. (2012). Establishing criteria of relative abundance of alkyl polycyclic aromatic hydrocarbons (PAHs) for differentiation of pyrogenic and petrogenic PAHs: An application to Indian sediment. Environmental Forensics, 13, 312–331.

    Article  CAS  Google Scholar 

  • Sharygin, V. V., Sokol, E. V., & Belakovskii, D. I. (2009). Fayalite-sekaninaite paralava from the Ravat coal fire (central Tajikistan). Russian Geology and Geophysics, 50, 703–721.

    Article  Google Scholar 

  • Simcik, M. F., Eisenreich, S. J., & Lioy, P. J. (1999). Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmospheric Environment, 33, 5071–5079.

    Article  CAS  Google Scholar 

  • Stout, S. A., & Emsbo-Mattingly, S. D. (2008). Concentration and character of PAHs and other hydrocarbons in coals of varying rank: Implications for environmental studies of soils and sediments containing particulate coal. Organic Geochemistry, 39, 801–819.

    Article  CAS  Google Scholar 

  • Stracher, G. B. (2004). Coal fires burning around the world: A global catastrophe: Preface. International Journal of Coal Geology, 59, 1–2.

    Article  CAS  Google Scholar 

  • Strachera, G. B., & Taylor, T. P. (2004). Coal fires burning out of control around the world: Thermodynamic recipe for environmental catastrophe. International Journal of Coal Geology, 59, 7–17.

    Article  Google Scholar 

  • Sun, Y. Z., Fan, J. S., Qin, P., & Niu, H. Y. (2009). Pollution extents of organic substances from a coal gangue dump of Jiulong Coal Mine, China. Environmental Geochemistry and Health, 31, 81–89.

    Article  CAS  Google Scholar 

  • Taghvaee, S., Sowlat, M. H., Hassanvand, M. S., Yunesian, M., Naddafi, K., & Sioutas, C. (2018). Source-specific lung cancer risk assessment of ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in central Tehran. Environment International, 120, 321–332.

    Article  CAS  Google Scholar 

  • Thiombane, M., Albanese, S., Di Bonito, M., Lima, A., Zuzolo, D., Rolandi, R., Qi, S., & De Vivo, B. (2019). Source patterns and contamination level of polycyclic aromatic hydrocarbons (PAHs) in urban and rural areas of Southern Italian soils. Environmental Geochemistry and Health, 41, 507–528.

    Article  CAS  Google Scholar 

  • Tsibart, A. S., & Gennadiev, A. N. (2013). Polycyclic aromatic hydrocarbons in soils: Sources, behavior, and indication significance (a review). Eurasian Soil Science, 46, 728–741.

    Article  CAS  Google Scholar 

  • Wang, C., Wu, S., Zhou, S., Shi, Y., & Song, J. (2017). Characteristics and source identification of polycyclic aromatic hydrocarbons (PAHs) in urban soils: A review. Pedosphere, 27, 17–26.

    Article  CAS  Google Scholar 

  • Wang, C., Wu, S., Zhou, S. L., Wang, H., Li, B., Chen, H., Yu, Y., & Shi, Y. (2015a). Polycyclic aromatic hydrocarbons in soils from urban to rural areas in Nanjing: Concentration, source, spatial distribution, and potential human health risk. Science of the Total Environment, 527–528, 375–383.

    Article  Google Scholar 

  • Wang, F., Lin, T., Feng, J., Fu, H., & Guo, Z. (2015b). Source apportionment of polycyclic aromatic hydrocarbons in PM2.5 using positive matrix factorization modeling in Shanghai. China. Environ Sci Process Impacts, 17, 197–205.

    Article  CAS  Google Scholar 

  • Wang, J. Z., Nie, Y. F., Luo, X. L., & Zeng, E. Y. (2008a). Occurrence and phase distribution of polycyclic aromatic hydrocarbons in riverine runoff of the Pearl River Delta, China. Marine Pollution Bulletin, 57, 767–774.

    Article  CAS  Google Scholar 

  • Wang, W., Massey Simonich, S. L., Xue, M., Zhao, J., Zhang, N., Wang, R., Cao, J., & Tao, S. (2010). Concentrations, sources and spatial distribution of polycyclic aromatic hydrocarbons in soils from Beijing, Tianjin and surrounding areas, North China. Environmental Pollution, 158, 1245–1251.

    Article  CAS  Google Scholar 

  • Wang, X., Cheng, H., Xu, X., Zhuang, G., & Zhao, C. (2008b). A wintertime study of polycyclic aromatic hydrocarbons in PM(2.5) and PM(2.5-10) in Beijing: Assessment of energy structure conversion. Journal of Hazardous Materials, 157, 47–56.

    Article  CAS  Google Scholar 

  • Wang, X. T., Miao, Y., Zhang, Y., Li, Y. C., Wu, M. H., & Yu, G. (2013). Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: Occurrence, source apportionment and potential human health risk. Science of the Total Environment, 447, 80–89.

    Article  CAS  Google Scholar 

  • Wang, Y., Qi, A., Wang, P., Tuo, X., Huang, Q., Zhang, Y., Xu, P., Zhang, T., Zhang, X., Zhao, T., Wang, W., & Yang, L. (2022). Temporal profiles, source analysis, and health risk assessments of parent polycyclic aromatic hydrocarbons (PPAHs) and their derivatives (NPAHs, OPAHs, ClPAHs, and BrPAHs) in PM2.5 and PM1.0 from the eastern coastal region of China: Urban coastal area versus coastal background area. Chemosphere, 292, 133341.

    Article  CAS  Google Scholar 

  • Wu, J., Yang, Y., Tou, F., Yan, X., Dai, S., Hower, J. C., Saikia, B. K., Kersten, M., & Hochella, M. F., Jr. (2022). Combustion conditions and feed coals regulating the Fe- and Ti-containing nanoparticles in various coal fly ash. Journal of Hazardous Materials, 445, 130482.

    Article  Google Scholar 

  • Xu, Z. P., Qian, Y. H., Yuan, K. Y., & Liang, H. D. (2022). Contamination characteristics and risk assessment of polycyclic aromatic compounds in soil from Industrial Park of Wuda District, Inner Mongolia, China. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2022.2140411

    Article  Google Scholar 

  • Yang, B., Zhou, L., Xue, N., Li, F., Li, Y., Vogt, R. D., Cong, X., Yan, Y., & Liu, B. (2013). Source apportionment of polycyclic aromatic hydrocarbons in soils of Huanghuai Plain, China: Comparison of three receptor models. Science of the Total Environment, 443, 31–39.

    Article  CAS  Google Scholar 

  • Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser river basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33, 489–515.

    Article  CAS  Google Scholar 

  • Yusuf, R. O., Odediran, E. T., Adeniran, J. A., & Adesina, O. A. (2022). Polycyclic aromatic hydrocarbons in road dusts of a densely populated African city: Spatial and seasonal distribution, source, and risk assessment. Environmental Science and Pollution Research, 29, 44970–44985.

    Article  CAS  Google Scholar 

  • Zhang, J., Liub, F., Huang, H., Wang, R., & Xu, B. (2020). Occurrence, risk and influencing factors of polycyclic aromatic hydrocarbons in surface soils from a large-scale coal mine, Huainan, China. Ecotoxicology and Environmental Safety, 192, 1–9.

    Article  Google Scholar 

  • Zhang, L., Daukoru, M., Torkamani, S., Wang, S., Hao, J., & Biswas, P. (2013). Measurements of mercury speciation and fine particle size distribution on combustion of China coal seams. Fuel, 104, 732–738.

    Article  CAS  Google Scholar 

  • Zhang, Y., Deng, S., Liu, Y., Shen, G., Li, X., Cao, J., Wang, X., Reid, B., & Tao, S. (2011). A passive air sampler for characterizing the vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air. Environmental Pollution, 159, 694–699.

    Article  CAS  Google Scholar 

  • Zhang, Y., Zheng, H., Zhang, L., Zhang, Z., Xing, X., & Qi, S. (2019). Fine particle-bound polycyclic aromatic hydrocarbons (PAHs) at an urban site of Wuhan, central China: Characteristics, potential sources and cancer risks apportionment. Environmental Pollution, 246, 319–327.

    Article  CAS  Google Scholar 

  • Zhao, L., Hou, H., Shangguan, Y., Cheng, B., Xu, Y., Zhao, R., Zhang, Y., Hua, X., Huo, X., & Zhao, X. (2014). Occurrence, sources, and potential human health risks of polycyclic aromatic hydrocarbons in agricultural soils of the coal production area surrounding Xinzhou, China. Ecotoxicology and Environmental Safety, 108, 120–128.

    Article  CAS  Google Scholar 

  • Zheng, H., Qu, C., Zhang, J., Talpur, S. A., Ding, Y., Xing, X., & Qi, S. (2019). Polycyclic aromatic hydrocarbons (PAHs) in agricultural soils from Ningde, China: Levels, sources, and human health risk assessment. Environmental Geochemistry and Health, 41, 907–919.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (41772157; 41902172) and Open Fund of the State Key Laboratory Coal Resources and Safe Mining (SKLCRSM21KFA11).

Author information

Authors and Affiliations

Authors

Contributions

YQ: Conceptualization, sample analyses, data interpretation and presentation, writing original draft; KY: Data analysis; JW: Sample collection; ZX: Experiments, image rendering; HL: Supervision, validation, review; CT: Validation, review.

Corresponding author

Correspondence to Cai Tie.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Consent to participate and consent to publish

Consent for publication was obtained from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8386 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Y., Yuan, K., Wang, J. et al. Parent and alkylated polycyclic aromatic hydrocarbon emissions from coal seam fire at Wuda, Inner Mongolia, China: characteristics, spatial distribution, sources, and health risk assessment. Environ Geochem Health 45, 7323–7337 (2023). https://doi.org/10.1007/s10653-023-01476-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01476-0

Keywords

Navigation