Skip to main content
Log in

Environmental impacts of an unlined municipal solid waste landfill on groundwater and surface water quality in Ibadan, Nigeria

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Environmental and public health concerns grow on the interaction of municipal solid waste (MSW) leachates from unlined waste disposal sites with aquifers in many developing countries. This study investigated the environmental pollution impacts of an unlined MSW landfill at Ajakanga area, Ibadan, southwest Nigeria. Analytical studies indicated that the concentrations of NO3, SO42−, PO43−, NH4, Cl, Na, Fe, Mn, Cr, and Mo in the leachate samples exceeded the WHO wastewater discharge limits. Hydrochemical parameters of the groundwater and surface water were within WHO allowable thresholds, except for EC, TDS, Fe, Mn, and Pb in the groundwater and Pb, Cd, and Cu in the surface water, indicating major geogenic and minor MSW leachate impacts on the groundwater and surface water chemistry. Bacteria found in the leachate include Enterobacter cloacae (16.67%), Pseudomonas spp. (14.28%) and Bacillus spp. (9.52%). The geoelectrical imaging data indicated substratum leachate infiltration greater than 10 m deep, which is consistent with the low resistivity values of the topsoil-weathered basement layers. The health risk assessment showed high hazardous index values, indicating health risks of Mn, Cd and Pb in the surface water for the residents around Ajakanga landfill. Hydrochemical data indicated greater impact of the MSW leachates on the surface water than the groundwater, while geophysical data showed greater propensity of the surrounding aquifer to leachate interaction through fractured basement zone with increasing abstraction. Waste site closure and hydrochemical monitoring are suggested measures to mitigate environmental pollution in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data are available upon request.

References

  • Abdelhafiz, M. A., Elnazer, A. A., Seleem, E. M., Mostafa, A., Al-Gamal, A. G., Salman, S. A., & Feng, X. (2021). Chemical and bacterial quality monitoring of the Nile River water and associated health risks in Qena-Sohag sector, Egypt. Environmental Geochemistry and Health, 43(10), 4089–4104. https://doi.org/10.1007/s10653-021-00893-3

    Article  CAS  Google Scholar 

  • Abdel-Salam, M. M., & Abu-Zuid, G. J. (2015). Impact of landfill leachate on the groundwater quality: A case study in Egypt. Journal of Advanced Research, 6(4), 579–586. https://doi.org/10.1016/j.jare.2014.02.003

    Article  CAS  Google Scholar 

  • Abdelwaheb, A., Moncef, Z., & Hamed, B. D. (2012). Landfill leachate generation and its impact on water at urban landfill (JabelChakir, Tunisia). Hydrology: Current Research, 3, 128. https://doi.org/10.4172/2157-7587.1000128

    Article  CAS  Google Scholar 

  • Abiriga, D., Jenkins, A., Alfsnes, K., Vestgarden, L. S., & Klempe, H. (2021). Characterization of the bacterial microbiota of a landfill-contaminated confined aquifer undergoing intrinsic remediation. Science of the Total Environment, 785, 147349.

    Article  CAS  Google Scholar 

  • Aboyeji, O. S., & Eigbokhan, S. F. (2016). Evaluations of groundwater contamination by leachates around Olusosun open dumpsite in Lagos metropolis, southwest Nigeria. Journal of Environmental Management, 1(183), 333–341. https://doi.org/10.1016/j.jenvman.2016.09.002

    Article  CAS  Google Scholar 

  • Adekola, P. O., Iyalomhe, F. O., Paczoski, A., Abebe, S. T., Pawlowska, B., Bak, M., & Cirella, G. T. (2021). Public perception and awareness of waste management from Benin City. Scientific Report, 11, 306. https://doi.org/10.1038/s41598-020-79688-y

    Article  CAS  Google Scholar 

  • Adewuyi, G. O., Etchie, A. T., & Etchie, T. O. (2014). Health risk assessment of exposure to metals in a Nigerian water supply. Human and Ecological Risk Assessment: An International Journal, 20, 29–44. https://doi.org/10.1080/10807039.2012.691407

    Article  CAS  Google Scholar 

  • Adimalla, N., Chen, J., & Qian, H. (2020). Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: A case study from an urban region of South India. Ecotoxicology and Environmental Safety, 194, 110406. https://doi.org/10.1016/j.ecoenv.2020.110406

    Article  CAS  Google Scholar 

  • Aluko, O. O., & Sridhar, M. K. C. (2005). Application of constructed wetlands to the treatment of leachate from a MSW landfill in Ibadan, Nigeria. Journal of Environmental Health, 67(10), 58–62.

    CAS  Google Scholar 

  • American Public Health Association (APHA). (2005). Standard methods for examination of water and wastewater (21st ed.). American Public Health Association.

    Google Scholar 

  • Amuda, O. S., Adebisi, S. A., Jimoda, L. A., & Alade, A. O. (2014). Challenges and possible panacea to the MSW management in Nigeria. Journal of Sustainable Development Studies, 6(1), 64–70.

    Google Scholar 

  • Aromolaran, O., Ayansina, A. D. V., Adegbami, A. A., Oshanisi, P. O., & Oladoyin, D. M. (2022). Prevalence of multidrug-resistant bacteria in groundwater supplies in Osogbo, Southwest Nigeria. International Journal of Environmental Studies, 79, 1–13.

    Article  Google Scholar 

  • Aromolaran, O., Fagade, O. E., Aromolaran, O. K., Faleye, E. T., & Faerber, H. (2019). Assessment of groundwater pollution near Aba-Eku municipal solid waste dumpsite. Environmental Monitoring and Assessment, 191(12), 718. https://doi.org/10.1007/s10661-019-7886-1

    Article  CAS  Google Scholar 

  • Awoibi, J., & Ademakinwa, G. O. (2018). Geophysical and hydro-chemical investigations of OkeAsunle dumpsite in Ile-Ife, southwestern Nigeria for subsoil and surface water pollution. Journal of Health and Pollution, 8(20), 1–9.

    Google Scholar 

  • Ayyaz, K., Zaheer, A., Rasul, G., & Mirza, M. S. (2016). Isolation and identification of 16S rRNA sequence analysis of plant growth promoting azospirilla from the rhizosphere of wheat. Brazilian Journal of Microbiology, 47(3), 542–550.

    Article  CAS  Google Scholar 

  • Babiker, I. S., Mohamed, A. A. M., Terao, H., Kato, K., & Ohta, K. (2004). Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographic information system. Environment International, 29, 1009–1017. https://doi.org/10.1016/S0160-4120(03)00095-3

    Article  CAS  Google Scholar 

  • Barati, A., Ghaderpour, A., Chew, L. L., Bong, C. W., Thong, K. L., Chong, V. C., & Chai, L. C. (2016). Isolation and characterization of aquatic borne Klebsiella pneumoniae from tropical estuaries in Malaysia. International Journal of Environmental Research and Public Health, 13, 426–442. https://doi.org/10.3390/ijerph13040426

    Article  CAS  Google Scholar 

  • Ben Salem, Z., Capelli, N., Laffray, X., Grisey, E., Ayadi, H., & Aleya, L. (2014). Seasonal variation of heavy metals in water, sediment and roach tissue in a landfill draining system pond (Etueffont, France). Ecological Engineering, 69, 25–37. https://doi.org/10.1016/j.ecoleng.2014.03.072

    Article  Google Scholar 

  • Bichet, V., Grisey, E., & Aleya, L. (2016). Spatial characterization of leachate plume using electrical resistivity tomography in a landfill composed of old and new cells (Belfort, France). Engineering Geology, 211, 61–73. https://doi.org/10.1016/j.enggeo.2016.06.026

    Article  Google Scholar 

  • Boateng, T. K., Opoku, F., & Akoto, O. (2019). Heavy metal contamination assessment of groundwater quality: A case study of Oti landfill site, Kumasi. Applied Water Science, 9, 33.

    Article  Google Scholar 

  • Boufekane, A., & Saighi, O. (2018). Application of groundwater vulnerability overlay and index methods to the Jijel plain area (Algeria). Groundwater, 56, 143–156. https://doi.org/10.1111/gwat.12582

    Article  CAS  Google Scholar 

  • Christensen, T. H., Kjeldsen, P., Bjerg, P. L., Jensen, D. L., Christensen, J. B., & Baun, A. (2001). Biogeochemistry of landfill leachate plumes. Applied Geochemistry, 16, 659–718. https://doi.org/10.1016/S0883-2927(00)00082-2

    Article  CAS  Google Scholar 

  • Dada, S. S. (2006). Proterozoic evolution of Nigeria. In O. Oshin (Ed.), The basement complex of nigeria and its mineral resources (A Tribute to Prof. M. A. O. Rahaman) (pp. 29–44). Akin Jinad and Company.

    Google Scholar 

  • Denutsui, D., Akiti, T. T., Osae, S., Tutu, A. O., Blankson-Arthur, S., Ayivor, J. E., Adu-Kwame, F. N., & Egbi, C. (2012). Leachate characterization and assessment of unsaturated zone pollution near municipal solid waste landfill site at Oblogo Accra-Ghana. Research Journal of Environmental Earth Science, 4(1), 134–141.

    CAS  Google Scholar 

  • Dharmarathne, N., & Gunatilake, J. (2013). Leachate characterization and surface-groundwater pollution at municipal solid waste landfill of Gohagoda, Sri Lanka. International Journal of Scientific Research, 3, 1–7. https://doi.org/10.1016/j.scitotenv.2020.137787

    Article  CAS  Google Scholar 

  • El-Taher, A. (2007). Rare-earth elements in Egyptian granite by instrumental neutron activation analysis. Applied Radiation and Isotopes, 65(4), 458–464. https://doi.org/10.1016/j.apradiso.2006.07.014

    Article  CAS  Google Scholar 

  • Enitan, I. T., Enitan, A. M., Odiyo, J. O., & Alhassan, M. M. (2018). Human health risk assessment of trace metals in surface water due to leachate from the municipal dumpsite by pollution index: A case study from Ndawuse River, Abuja, Nigeria. Open Chemistry, 16(1), 214–227.

    Article  CAS  Google Scholar 

  • Environmental Protection Agency (EPA). (2014). Framework for human health risk assessment to inform decision making framework for human health risk assessment to inform decision making.

  • Esomonu, P. C., Abanobi, O. C., & Ihejirika, C. E. (2012). Enteric pathogens and diarrhea disease potential of water sources in Ahiazu Mbaise, eastern Nigeria. Journal of Public Health and Epidemiology, 4, 39–43.

    Google Scholar 

  • Ezeudu, O. B., Agunwanba, J. C., Ugochukwu, C., & Ezeudu, T. S. (2020). Temporal assessment of municipal solid waste management in Nigeria: prospects for circular economy adoption. Reviews on Environmental Health, 36(3), 327–344. https://doi.org/10.1515/reveh-2020-0084

    Article  Google Scholar 

  • Faure, G. (1998). Principles and applications of geochemistry (2nd ed.). Prentice Hall.

    Google Scholar 

  • Fernandez, D. S., Puchulu, M. E., & Georgieff, S. M. (2014). Identification and assessment of water pollution as a consequence of a leachate plume migration from a municipal landfill site (Tucuman, Argentina). Environmental Geochemistry and Health, 36, 489–503. https://doi.org/10.1007/s10653-013-9576-1

    Article  CAS  Google Scholar 

  • Filippelli, G. M., Morrison, D., & Cicchella, D. (2012). Urban geochemistry and human health. Elements, 8, 439–444.

    Article  Google Scholar 

  • Ganiyu, S. A., Badmus, B. S., Oladunjoye, M. A., Aizebeokhai, A. P., & Olurin, O. T. (2015). Delineation of leachate plume migration using electrical resistivity imaging on Lapite Dumpsite in Ibadan, southwestern Nigeria. Geoscience, 5(2), 70–80.

    Google Scholar 

  • Ganiyu, S. A., Badmus, B. S., Oladunjoye, M. A., Aizebeokhai, A. P., Ozebo, V. C., Idowu, O. A., & Olurin, O. T. (2016). Assessment of groundwater contamination around active dumpsite in Ibadan southwest Nigeria using integrated electrical resistivity and hydrochemical methods. Environmental Earth Science, 75, 643. https://doi.org/10.1007/s12665-016-5463-2

    Article  CAS  Google Scholar 

  • Gerba, C. P., Tamimi, A. H., Pettigrew, C., Weisbrod, A. V., & Rajagopalan, V. (2011). Sources of microbial pathogens in municipal solid waste landfills in the United State of America. Waste Management and Research, 29(8), 781–790.

    Article  Google Scholar 

  • Giang, N. V., Kochanek, K., Vu, N. T., & Duan, N. B. (2018). Landfill leachate assessment by hydrological and geophysical data: Case study of NamSon, Hanoi, Vietnam. Journal of Material Cycle and Waste Management, 20, 1648–1662. https://doi.org/10.1007/s10163-018-0732-7

    Article  Google Scholar 

  • Grisey, E., Belle, E., Dat, J., Mudry, J., & Aleya, L. (2010). Survival of pathogenic and indicator organisms in groundwater and landfill leachate through coupling bacteria enumeration with tracer test. Desalination, 261, 162–168. https://doi.org/10.1016/j.desal.2010.05.007

    Article  CAS  Google Scholar 

  • Guerrero-Rodríguez, D., Sánchez-Yáñez, J. M., Buenrostro-Delgado, O., & Márquez-Benavides, L. (2014). Phytotoxic effect of landfill leachate with different pollution indexes on common bean. Water, Air and Soil Pollution, 225, 1–7. https://doi.org/10.1007/s11270-014-2002-1

    Article  CAS  Google Scholar 

  • Hamzah, U., Jeeva, M., & Ali, N. A. M. (2014). Electrical resistivity technique and chemical analysis in the study of leachate migration at Sungai Sedu landfill. Asian Journal of Applied Sciences, 7, 518–535. https://doi.org/10.3923/ajaps.2014.518.535

    Article  Google Scholar 

  • Han, D., Tong, X., Currell, M. J., Cao, G., Jin, M., & Tong, C. (2014). Evaluation of the impact of an uncontrolled landfill on surrounding groundwater quality, Zhoukou, China. Journal of Geochemical Exploration, 136, 24–39. https://doi.org/10.1016/j.gexplo.2013.09.008

    Article  CAS  Google Scholar 

  • Huang, L., Zhu, S., Zhou, H., & Qu, L. (2005). Molecular phylogenetic diversity of bacteria associated with the leachate of a closed municipal solid waste landfill. FEMS Letters, 242, 297–303. https://doi.org/10.1016/j.femsle.2004.11.021

    Article  CAS  Google Scholar 

  • Hussein, M., Yoneda, K., Zaki, Z. M., Othman, N., & Amir, M. 2019. Leachate characterizations and pollution indices of active and closed unlined landfills in Malaysia. Environmental Nanotechnology, Monitoring & Management,12, 100232. https://doi.org/10.1016/j.enmm.2019.100232.

  • Jabari, L., Gannoun, H., Khelifi, E., Cayol, J. L., Godon, J. J., Handi, M., & Fardeau, M. L. (2016). Bacterial ecology of abattoir wastewater treated by an anaerobic digester. Brazilian Journal of Microbiology, 47(1), 73–84. https://doi.org/10.1016/j.bjm.2015.11.029

    Article  CAS  Google Scholar 

  • Kale, S. S., Kadam, A. K., Kumar, S., & Pawar, N. J. (2010). Evaluating pollution potential of leachate from landfill site from the Pune metropolitan city and its impact on shallow basaltic aquifer. Environmental Monitoring and Assessment, 162, 327–346. https://doi.org/10.1007/s10661-009-0799-7

    Article  CAS  Google Scholar 

  • Kausar, R., & Ahmed, Z. (2009). Determination of toxic inorganic elements pollution in ground water of Kahuta Industrial Triangle Islamahad, Pakistan using ICP-MS. Environmental Monitoring and Assessment, 157, 347–354. https://doi.org/10.1007/s10661-008-0539-4

    Article  CAS  Google Scholar 

  • Kavcar, P., Sofuoglu, A., & Sofuoglu, S. C. (2009). A health risk assessment for exposure to trace metals via drinking water ingestion pathway. International Journal of Hygiene and Environmental Health, 212(2), 212–227. https://doi.org/10.1016/j.ijheh.2008.05.002

    Article  CAS  Google Scholar 

  • Kehew, A. E. (2001). Applied chemical hydrogeology (p. 368). Prentice Hall.

    Google Scholar 

  • Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A., & Christensen, T. H. (2002). Present and long term composition of MSW landfill leachate: A review. Critical Reviews in Environmental Science and Technology, 32, 297–336.

    Article  CAS  Google Scholar 

  • Koh, E., Kaown, D., Kim, H. J., Lee, K., Kim, H., & Park, S. (2019). Nationwide groundwater monitoring around infectious disease-caused livestock mortality burials in Korea: Superimposed influence of animal leachate on pre-existing anthropogenic pollution. Environmental International, 129, 376–388. https://doi.org/10.1016/j.envint.2019.04.073

    Article  CAS  Google Scholar 

  • Krishnamurthi, S., & Chakrabarti, T. (2013). Diversity of bacteria and archaea from a landfill in Chandigarh, India is revealed by culture dependent and culture-independent molecular approaches. Systematic Applied Microbiology, 36, 56–68. https://doi.org/10.1016/j.syapm.2012.08.009

    Article  CAS  Google Scholar 

  • Krystosik, A., Njoroge, G., Odhiambo, L., Forsyth, J. E., Mutuku, F., & LaBeaud, A. D. (2020). Solid wastes provide breeding sites, burrows, and food for biological disease vectors, and urban zoonotic reservoirs: A call to action for solutions-based research. Frontiers in Public Health, 7, 405. https://doi.org/10.3389/fpubh.2019.00405

    Article  Google Scholar 

  • Kumar, D., & Alappat, B. J. (2005). Analysis of leachate pollution index and formulation of sub-leachate pollution indices. Waste Management Research, 23, 230–239. https://doi.org/10.1177/0734242X05054875

    Article  CAS  Google Scholar 

  • Li, P., Wu, J., Qian, H., Zhang, Y., Yang, N., Jing, L., & Yu, P. (2016). Hydrogeochemical characterization of groundwater in and around a wastewater irrigated forest in the southeastern edge of the Tengger Desert, Northwest China. Exposure and Health, 8, 331–348. https://doi.org/10.1007/s12403-016-0193-y

    Article  CAS  Google Scholar 

  • Li, X., Liu, L., Wang, Y., Luo, G., Chen, X., Yang, X., Hall, M. H. P., Guo, R., Wang, H., Cui, J., & He, X. (2013). Heavy metal contamination of urban soil in an old industrial city (Shenyang) in Northeast China. Geoderma, 192, 50–58. https://doi.org/10.1016/j.geoderma.2012.08.011

    Article  CAS  Google Scholar 

  • Lloyd, J. W., & Healthcote, J. A. (1985). Natural inorganic hydrochemistry in relation to ground water: An introduction. Clarendon Press.

    Google Scholar 

  • Lyons, W. B., & Harmon, R. S. (2012). Why urban geochemistry? Elements, 8, 417–422.

    Article  Google Scholar 

  • Machado, I., Falchi, L., Buhl, V., & Manay, N. (2020). Arsenic levels in groundwater and its correlation with relevant inorganic parameters in Uruguay: A medical geology perspective. Science of the Total Environment, 721, 137787.

    Article  CAS  Google Scholar 

  • McBean, E. A., Rovers, F. A., & Farquhar, G. J. (1995). Solid waste landfill engineering and design (p. 521). Prentice Hall.

    Google Scholar 

  • Mohamed, M. A., Terao, H., Suzuki, R., Babiker, I. S., Ohta, K., & Kaori, K. (2003). Natural denitrification in the Kakamigahara groundwater basin, Gifu prefecture, central Japan. Science of the Total Environment, 307(1–3), 191–2001. https://doi.org/10.1016/S0048-9697(02)00536-3

    Article  CAS  Google Scholar 

  • Mor, S., Ravindra, K., Dahiya, R. P., & Chandra, A. (2006). Leachate characterization and assessment of groundwater pollution near landfill site. Environmental Monitoring and Assessment, 118, 435–456.

    Article  CAS  Google Scholar 

  • Mosuro, G. O., Omosanya, K. O., Bayewu, O. O., Oloruntola, M. O., Laniyan, T. A., Atobi, O., Okubena, M., Popoola, E., & Adekoy, F. (2017). Assessment of groundwater vulnerability to leachate infiltration using electrical resistivity method. Applied Water Science, 7, 2195–2207. https://doi.org/10.1007/s13201-016-0393-4

    Article  CAS  Google Scholar 

  • National Population Commission (NPC). (2006). National Population Commission of Nigeria. www. population.gov.ng. NSDWQ.

  • Naveen, B. P., Mahapatra, D. M., Sitharam, T. G., Sivapullaiah, P. V., & Ramachandra, T. V. (2017). Physicochemical and biological characterization of urban municipal landfill leachate. Environmental Pollution, 220, 1-12. https://doi.org/10.1016/j.envpol.2016.09.002

  • Naveen, B. P., Sivapullaiah, P. V. and Sitharam, T. G. (2014). Characteristics of a municipal solid waste landfill leachate. In Proceedings of Indian Geotechnical Conference IGC, Kakinada, India (pp. 1–7). https://doi.org/10.13140/2.1.4972.4489

  • Niloufer, S., Swamy, A. V. V. S., & Davi, K. S. (2013). Impact of municipal solid waste on the groundwater quality in Vijayawada city, Andhra Pradesh. Indian Journal of Applied Research, 3(4), 1–3.

    Google Scholar 

  • Ohwoghere-Asuma, O., & Aweto, K. E. (2013). Leachate characterization and assessment of groundwater and surface water qualities near municipal solid waste dump site in Effurun, Delta State. Journal of Environment and Earth Science, 3(9), 126–135.

    Google Scholar 

  • Oketola, A. A., & Akpotu, S. O. (2015). Assessment of solid waste and dumpsite leachate and topsoil. Chemistry and Ecology, 31(2), 134–146. https://doi.org/10.1080/02757540.2014.907280

    Article  CAS  Google Scholar 

  • Oladunjoye, M. A., Olayinka, A. I., & Amidu, S. A. (2011). Geo-electrical imaging at an abandoned waste dumpsite in Ibadan, southwestern Nigeria. Journal of Applied Sciences, 11, 3755–3764. https://doi.org/10.3923/jas.2011.3755.3764

    Article  Google Scholar 

  • Olobaniyi, S. B., Ogala, J. E., & Nfor, N. B. (2007). Hydrogeochemical and bacteriological investigation in Agbor area, southern Nigeria. Journal of Mining and Geology, 43(1), 79–89. https://doi.org/10.4314/jmg.v43i1.18867

    Article  Google Scholar 

  • Ostad-Ali-askari, K., & Shayan, M. (2021). Subsurface drain spacing in the unsteady conditions by HYDRUS-3D and artificial neutral networks. Arabian Journal of Geoscience, 14, 1936.

    Article  Google Scholar 

  • Ostad-Ali-Askari, K., Shayannejad, M., & Ghorbanizadeh-Kharazi, H. (2016). Artificial neutral network for modeling nitrate pollution of groundwater in marginal area of Zayandeh-rood River, Isfahan, Iran. KSCE Journal of Civil Engineering, 21, 134.

    Article  Google Scholar 

  • Pandey, P. K., Kass, P. H., Soupir, M. L., Biswas, S., & Singh, V. P. (2014). Contamination of water resources by pathogenic bacteria. AMB Express, 4, 51. https://doi.org/10.1186/s13568-014-0051-x

    Article  Google Scholar 

  • Parvin, F., & Tareq, S. M. (2021). Impact of landfill leachate contamination on surface and groundwater of Bangladesh: A systematic review and possible public health risks assessment. Applied Water Science, 11, 100. https://doi.org/10.1007/s13201-021-01431-3

    Article  CAS  Google Scholar 

  • Podschun, R., Pietsch, S., Holler, C., & Ullmann, U. (2001). Incidence of Klebsiella species in surface water and their expression of virulence factors. Applied Environmental Microbiology, 67(7), 3325–3327. https://doi.org/10.1128/AEM.67.7.3325-3327.2001

    Article  CAS  Google Scholar 

  • Pujari, P. R., Pardhi, P., Muduli, P., Harkare, P., & Nanoti, M. V. (2007). Assessment of pollution near landfill site in Nagpur, India by resistivity imaging and GPR. Environmental Monitoring and Assessment, 131, 489–500.

    Article  CAS  Google Scholar 

  • Rahaman, M. A. (1988). Recent advances in the study of the Basement Geology of Nigeria. In P. O. Oluyide, W. C. Mbonu, A. E. Ogezi, A. C. Egbuniwe, A. C. Ajibade, & A. C. Umeji (Eds.), Precambrian geology of Nigeria (pp. 157–163). Geological Survey of Nigeria Special Publication.

    Google Scholar 

  • Raman, N., & Narayanan, D. S. (2008). Impact of solid waste effect on groundwater and soil quality nearer to Pallavaram solid waste landfill site in Chennai. Rasayan Journal of Chemistry, 1(4), 828–836.

    CAS  Google Scholar 

  • Rollison, H. R., & Pease, V. (2021). Using geochemical data to understanding geological processes (2nd ed., p. 346). Cambridge University Press.

    Book  Google Scholar 

  • Rusydi, A. F. (2018). Correlation between conductivity and total dissolved solid in various type of water: A review. Earth and Environmental Science, 118, 012019. https://doi.org/10.1088/1755-1315/118/1/012019

    Article  Google Scholar 

  • Salman, S. A., Asmoay, A., El-Gohary, A., & Sabet, H. (2019). Evaluation of human risks of surface water and groundwater contaminated with Cd and Pb in the southern ElMinya Governorate, Egypt. Drinking Water Engineering and Science, 12, 23–30. https://doi.org/10.5194/dwes-12-23-2019

    Article  CAS  Google Scholar 

  • Sawamura, H., Yamada, M., Endo, K., Soda, S., Ishigaki, T., & Ike, M. (2010). Characterization of microorganisms at different landfill depths using carbon-utilization pattern and 16S rRNA gene based T-RFLP. Journal of Bioscience and Bioengineering, 109, 130–137. https://doi.org/10.1016/j.jbiosc.2009.07.020

    Article  CAS  Google Scholar 

  • Shanker, A. S., Vootla, P. K., & Pindi, P. K. (2020). Exploration of coliform diversity in drinking water resources by culture independent approaches. Journal of Water, Sanitation and Hygiene for Development, 10(3), 580–588.

    Article  Google Scholar 

  • Slack, R. J., Gronow, J. R., & Voulvoulis, N. (2005). Household hazardous waste in municipal landfills: Contaminants in leachate. Science of the Total Environment, 337, 119–137. https://doi.org/10.1016/j.scitotenv.2004.07.002

    Article  CAS  Google Scholar 

  • Song, L., Wang, Y., Tang, W., & Lei, Y. (2015). Bacterial community diversity in municipal waste landfill sites. Applied Microbiology and Biotechnology, 99, 7745–7756. https://doi.org/10.1007/s00253-015-6633-y

    Article  CAS  Google Scholar 

  • Sun, X., Xu, Y., Liu, Y., Nai, C., Dong, L., Liu, J., & Huang, Q. (2019). Evolution of geomembrane degradation and defects in a landfill: Impacts on long-term leachate leakage and groundwater quality. Journal of Cleaner Production, 224, 335–345. https://doi.org/10.1016/j.jclepro.2019.03.200

    Article  CAS  Google Scholar 

  • Tatsi, A. A., & Zouboulis, A. I. (2002). A field investigation of the quantity and quality of leachate from a municipal solid waste landfill in a Mediterranean climate (Thessaloniki, Greece). Advances in Environmental Research, 6, 207–219. https://doi.org/10.1016/S1093-0191(01)00052-1

    Article  CAS  Google Scholar 

  • Teta, C., & Hikwa, T. (2017). Heavy Metal Contamination of Ground Water from an Unlined Landfill in Bulawayo, Zimbabwe. Journal of Health and Pollution, 7(15), 18–27. https://doi.org/10.5696/2156-9614-7.15.18

    Article  Google Scholar 

  • United State Environmental Protection Agency (USEPA). (1992). Guidelines for Exposure Assessment. (EPA/600/z-92/001). US Environmental Protection Agency Risk Assessment Forum, Washington, DC.

  • United Nations Environmental Protection (UNEP). (2013).Guidelines for national waste management strategies. Moving from challenges to opportunities ISBN 978-92-807-3333-4.

  • United State Environmental Protection Agency (USEPA). (2014). Framework for human health risk assessment to inform decision making framework for human health risk assessment to inform decision making. https://doi.org/10.1504/IJRAM.2017.082558.

  • USEPA. (1989). Risk assessment. https://www.epa.gov/risk. Date Accessed 04/08/2021.

  • Vasudevan, U., Gantayat, R. R., Chidambaram, S., et al. (2021). Microbial contamination and its associations with major ions in shallow groundwater along coastal Tamil Nadu. Environmental Geochemistry and Health, 43, 1069–1088. https://doi.org/10.1007/s10653-020-00712-1

    Article  CAS  Google Scholar 

  • Vereecken, H., Binley, A., Cassiani, G., Revil, A., & Titov, K. (2006). Applied hydrogeophysics. In H. Vereecken, A. Binley, G. Cassiani, A. Revil, & K. Titov (Eds.), Applied hydrogeophysics (pp. 1–8). Springer.

    Chapter  Google Scholar 

  • Wang, Z., Su, Q., Wang, S., Gao, Z., & Liu, J. (2021). Spatial distribution and health risk assessment of dissolved heavy metals in groundwater of eastern China coastal zone. Environmental Pollution, 290, 1–11. https://doi.org/10.1016/j.envpol.2021.118016

    Article  CAS  Google Scholar 

  • Webber, R., Watson, A., Forter, M., & Oliael, F. (2011). Persistent organic pollutants and landfills: A review of past experiences and future challenges. Waste Management and Research, 29, 107–121. https://doi.org/10.1177/0734242X10390730

    Article  CAS  Google Scholar 

  • Wong, C. I., Sharp, J. M., Hauwert, N., Landrum, J., & White, K. M. (2012). Impact of urban development on physical and chemical hydrogeology. Elements, 8, 429–434. https://doi.org/10.2113/gselements.8.6.429

    Article  Google Scholar 

  • World Health Organization (WHO). (2017). Guidelines for drinking-water quality: Fourth edition incorporating the first addendum (p. 541). World Health Organization.

  • Xie, B., Xiong, S., Liang, S., Hu, C., Zhang, X., & Lu, J. (2012). Performance and bacterial compositions of aged refuse reactors treating mature landfill leachate. Bioresource Technology, 103, 71–77. https://doi.org/10.1016/j.biortech.2011.09.114

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are sincerely grateful to the Institute of Hygiene and Public Health, University of Bonn, Germany, for analysing the elemental components of the leachate samples. The efforts of Mr. Andrew K. Akingbesote and Mr. Sunday O. Aromolaran are highly appreciated for assisting with the fieldwork survey carried out in this work, and the contributions of Dr J. A. Aladejana and Abraham Remilekun Adeniyi, for the statistical analyses are gratefully acknowledged.

Funding

No funding was received for this research work and preparation of manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Aromolaran OK and Aromolaran O conceptualized and designed the study, carried out the field study, data collection and analyses, and wrote the manuscript. Faleye TE contributed to the field study, data collection, and wrote part of the manuscript. Faerber H analysed part of the data and reviewed the manuscript. All authors approved the final manuscript.

Corresponding author

Correspondence to Olukemi Aromolaran.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable in this study.

Consent to participate

This study does not contain any studies on humans or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aromolaran, O.K., Aromolaran, O., Faleye, E.T. et al. Environmental impacts of an unlined municipal solid waste landfill on groundwater and surface water quality in Ibadan, Nigeria. Environ Geochem Health 45, 3585–3616 (2023). https://doi.org/10.1007/s10653-022-01437-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01437-z

Keywords

Navigation