Skip to main content
Log in

A systematic assessment of research trends on polycyclic aromatic hydrocarbons in different environmental compartments using bibliometric parameters

  • Review Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are a large group of diverse hazardous organic compounds that are relatively stable and widely distributed throughout the world’s ecosystems due to various anthropogenic activities. They are generally less soluble in water and have a low vapour pressure, but dissolve easily in adipose tissues; and they bioaccumulate into high concentrations in aquatic animals, thereby exerting a variety of hazardous and lethal effects. Despite the plethora of research studies on these pollutants, only few bibliometric reviews on the subject have been documented in the literature. As a result, the present study aimed to assess the research growth on PAHs-related studies across different ecosystems. Science Citation Index-Expanded of Web of Science was explored to obtain the research studies that were conducted between 1991 and 2020, and RStudio was utilized for the data analysis. Annual productivity increased arithmetically over the years, with a 9.2% annual growth rate and a collaboration index of 2.52. Foremost among the trend topics in this field of study include soil, sediments, biodegradation, bioremediation, bioavailability, and source apportionment. China, USA, Spain, France and Germany were the five top-ranked countries in terms of publications and citations over the three decades investigated; however, Korea, Japan, United Kingdom, Germany, and Canada were ranked as the five leading countries in terms of collaboration per published article (MCP ratio). Therefore, efforts to strengthen international collaboration in this field of study especially among the less participating countries and continents are thus encouraged. The findings of this study are expected to provide future direction for the upcoming researchers in identifying the hot spots in this field of study as well as research leaders whom to seek collaboration in their future research plan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data in this study were obtained from the Science Citation Index Expanded (SCI-Expanded) of the Web of Science (WoS) and available online for verification.

References

  • Abdel-Shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25, 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011

    Article  Google Scholar 

  • Adeniji, A. O., Okoh, O. O., & Okoh, A. I. (2019a). Distribution pattern and health risk assessment of polycyclic aromatic hydrocarbons in the water and sediment of Algoa Bay, South Africa. Environmental Geochemistry and Health, 41(3), 1303–1320. https://doi.org/10.1007/s10653-018-0213-x

    Article  CAS  Google Scholar 

  • Adeniji, A. O., Okoh, O. O., & Okoh, A. I. (2019b). Levels of polycyclic aromatic hydrocarbons in the water and sediment of Buffalo River Estuary, South Africa and their health risk assessment. Archives of Environmental Contamination and Toxicology, 76(4), 657–669. https://doi.org/10.1007/s00244-019-00617-w

    Article  CAS  Google Scholar 

  • Adeniji A.O., Okoh O.O., Okoh A.I. (2018). Analytical methods for polycyclic aromatic hydrocarbons and their global trend of distribution in water and sediment: a review. In: Recent insights in petroleum science and engineering; edited by Manar El-Sayed Abdul-Raouf. ISBN 978-953-51-5321-4. https://doi.org/10.5772/intechopen.71163.

  • Aksnes, D.W., Langfeldt, L., & Wouters, P. (2019). Citations, citation indicators, and research quality: an overview of basic concepts and theories. SAGE Open, pp 1–17.

  • Albanese, S., Fontaine, B., Chen, W., Lima, A., Cannatelli, C., Piccolo, A., Qi, S., Wang, M., & Vivo, B. D. (2014). Polycyclic aromatic hydrocarbons in the soils of a densely populated region and associated human health risks: The Campania Plain (Southern Italy) case study. Environmental Geochemistry and Health, 37, 1–20. https://doi.org/10.1007/s10653-014-9626-3

    Article  CAS  Google Scholar 

  • Alegbeleye, O. O. (2015). Bioremediation of Polycyclic Aromatic Hydrocarbons (PAHs) in water using indigenous microbes of Diep- and Plankenburg Rivers, Western Cape, South Africa [thesis]. Cape Peninsula University of Technology.

    Google Scholar 

  • Aleixandre-Tud´o, J.L., Castell´o-Cogollos, L., Aleixandre, J.L., Aleixandre-Benavent, R. (2019). Emerging topics in scientific research on global water-use efficiency. Journal of Agricultural Science, 157(6), 480–492. https://doi.org/10.1017/S0021859619000789

    Article  Google Scholar 

  • Alexander, M. (1995). How toxic are toxic chemicals in soil? Environmental Science and Technology, 29(11), 2713–2717. https://doi.org/10.1021/es00011a003

    Article  CAS  Google Scholar 

  • Alharmoodi, F., & Gulseven, O. (2020). The Role of Water Resources in Achieving Sustainable Development Goals in Africa. Agriculture, Livestock, and Fisheries; pp 6. https://doi.org/10.13140/RG.2.2.11218.50882

  • Al-Saleh, I., Alsabbahen, A., Shinwari, N., Billedo, G., Mashhour, A., Al-Sarraj, Y., Mohamed, G. E. D., & Rabbah, A. (2013). Polycyclic aromatic hydrocarbons (PAHs) as determinants of various anthropometric measures of birth outcome. Science of the Total Environment, 444, 565–578. https://doi.org/10.1016/j.scitotenv.2012.12.021

    Article  CAS  Google Scholar 

  • Amdany, R. (2013). Passive Samplers: Development and Application in Monitoring Organic Micropollutants in South African Water Bodies and Wastewater [thesis] (p. 2013). University of the Witwatersrand, Johannesburg.

    Google Scholar 

  • Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007

    Article  Google Scholar 

  • Aronstein, B. N., & Alexander, M. (1992). Surfactants at low concentrations stimulate biodegradation of sorbed hydrocarbons in samples of aquifer sands and soil slurries. Environmental Toxicology and Chemistry, 11(9), 1227–1233. https://doi.org/10.1002/etc.5620110903

    Article  CAS  Google Scholar 

  • Ashok, B. T., Saxena, S., & Musarrat, J. (1995). Isolation and characterization of four polycyclic aromatic hydrocarbon degrading bacteria from soil near an oil refinery. Letters in Applied Microbiology, 21(4), 246–248. https://doi.org/10.1111/j.1472-765X.1995.tb01052.x

    Article  CAS  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (2009). Case studies in environmental medicine: toxicity of polycyclic aromatic hydrocarbons (PAHs), pp 23–26

  • Awe, A. A., Opeolu, B. O., Olatunji, O. S., Fatoki, O. S., Jackson, V. A., & Snyman, R. (2020). Occurrence and probabilistic risk assessment of PAHs in water and sediment samples of the Diep River. South Africa. Heliyon, 6, e04306. https://doi.org/10.1016/j.heliyon.2020.e04306

    Article  Google Scholar 

  • Baek, S., Yoon, D. Y., Lim, K. J., Cho, Y. K., Seo, Y. L., & Yun, E. J. (2018). The most downloaded and most cited articles in radiology journals: A comparative bibliometric analysis. European Radiology, 28, 4832–4838. https://doi.org/10.1007/s00330-018-5423-1

    Article  Google Scholar 

  • Bandowe, B. A. M., & Nkansah, M. A. (2016). Occurrence, distribution and health risk from polycyclic aromatic compounds (PAHs, oxygenated-PAHs and azaarenes) in street dust from a major West African Metropolis. Science of the Total Environment, 553, 439–449. https://doi.org/10.1016/j.scitotenv.2016.02.142

    Article  CAS  Google Scholar 

  • Boitsov, S., Jensen, H. K. B., & Klungsøyr, J. (2009). Natural background and anthropogenic inputs of polycyclic aromatic hydrocarbons (PAHs) in sediments of South-Western Barents Sea. Marine Environment Research, 68(5), 236–245.

    Article  CAS  Google Scholar 

  • Brazkova, M., & Krastanov, A. (2013). Polycyclic aromatic hydrocarbons: Sources, effects and biodegradation. In: Proceedings of the International Scientific Conference of University of Ruse, Razgrad, Bulgaria; 52(10.2):1–5

  • Bukowiecki, N., Lienemann, P., Hill, M., Furger, M., Richard, A., Amato, F., Prévôt, A., Baltensperger, U., Buchmann, B., & Gehrig, R. (2010). PM10 emission factors for non-exhaust particles generated by road traffic in an urban street canyon and along a freeway in Switzerland. Atmospheric Environment, 44(19), 2330–2340.

    Article  CAS  Google Scholar 

  • Caballero, B., Finglas, P., & Toldra, F. (2015). Encyclopedia of food and health (1st ed). 9780123849472.

  • CCME (Canadian Council Of Ministers of the Environment). (1999). Canadian Water Quality Guidelines for the Protection of Aquatic Life: Polycyclic Aromatic Hydrocarbons (PAHs). Publication No. 1299 [Internet]. Available from: http://ceqg-rcqe.ccme.ca/download/en/201/

  • Cerniglia, C. E. (1992). Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 3(2), 351–368.

    Article  CAS  Google Scholar 

  • Cerniglia, C. E. (1997). Fungal metabolism of polycyclic aromatic hydrocarbons: Past, present and future applications inbioremediation. Journal of Industrial Microbiology and Biotechnology, 19(5), 324–333.

    Article  CAS  Google Scholar 

  • Cerniglia, C. E., & Sutherland, J. B. (2001). Bioremediation of polycyclic aromatic hydrocarbons by ligninolytic and non-ligninolytic fungi. In G. M. Gadd (Ed.), Fungi in Bioremediation (pp. 136–187). Cambridge University Press.

    Chapter  Google Scholar 

  • Cerniglia CE. (1993). Biodegradation of polycyclic aromatic hydrocarbons. Current Opinion in Biotechnology, 4, 331–338. https://doi.org/10.1016/0958-1669(93)90104-5

  • Chan SM, Luan T, Wong MH, Tam NF. (2006). Removal and biodegradation of polycyclic aromatic hydrocarbons by Selenastrum capricornutum. Environmental Toxicology and Chemistry, 25 (7), 1772–1779. https://doi.org/10.1897/05-354R.1

  • Cheng, H. F., Hu, E., & Hu, Y. A. (2012). Impact of mineral micropores on transport and fate of organic contaminants: A review. Journal of Contaminant Hydrology, 129, 80–90.

    Article  Google Scholar 

  • Chimuka, L., Sibiya, P., Amdany, R., Cukrowska, E., & Forbes, P. B. C. (2016). Status of PAHs in Environmental Compartments of South Africa: A Country Report, Polycyclic Aromatic Compounds, 364, 376–394. https://doi.org/10.1080/10406638.2014.988276

  • Deus, R. M., Bezerra, B. S., & Battistelle, R. A. G. (2019). Solid waste indicators and their implications for management practice. International Journal of Environmental Science and Technology, 2019(16), 1129–1144. https://doi.org/10.1007/s13762-018-2163-3

    Article  Google Scholar 

  • Deutsch-Wenzel, R. P., Brune, H., Grimmer, G., Dettbarn, G., & Misfeld, J. (1983). Experimental studies in rat lungs on the carcinogenicity and dose-response relationships of eight frequently occurring environmental polycyclic aromatic hydrocarbons. Journal of the National Cancer Institute, 71, 539–544.

    CAS  Google Scholar 

  • Dhital, S., & Rupakheti, D. (2019). Bibliometric analysis of global research on air pollution and human health: 1998–2017. Environmental Science and Pollution Research, 26, 13103–13114. https://doi.org/10.1007/s11356-019-04482-x

    Article  Google Scholar 

  • Diaz, M., Mora, V., Pedrozo, F., Nichela, D., & Baffico, G. (2014). Evaluation of native acidophilic algae species as potential indicators of polycyclic aromatic hydrocarbon (PAH) soil contamination. Journal of Applied Phycology, 27, 321–325.

    Article  Google Scholar 

  • Doan M. (2005). Concentrations of Polycyclic Aromatic Hydrocarbons in Surficial Sediments of the Fore River and Portland Harbor, Maine. A Report to the Natural Resource Damage Trustees’ Agreement Number: 604195 [Internet]. Available from: http://www.cascobayestuary.org/wp-content/uploads/2014/07/2005_focb_fore_river_pahs_report6.pdf. Accessed: 2016–11–15.

  • Draine, B. T., & Li, A. (2007). Infrared emission from Interstellar Dust. Iv. The Silicate-Graphite-PAH Model in the Post-Spitzer Era. The Astrophysical Journal, 657, 810–837.

    Article  CAS  Google Scholar 

  • Draine, B. T., Dale, D. A., Bendo, G., Gordon, K. D., Smith, J. D. T., Armus, L., Engelbracht, C. W, Helou G., Kennicutt R. C., Jr., Li A., Roussel H., Walter F., Calzetti D., Moustakas J., Murphy E. J., Rieke G. H., Bot C., Hollenbach D. J., Sheth K., & Teplitz H. I. (2007). Dust masses, PAH abundances, and starlight intensities in the sings galaxy sample. The Astrophysical Journal, 663, 866–894.

    Article  CAS  Google Scholar 

  • Ekundayo, T. C., & Okoh, A. I. (2018). A global bibliometric analysis of Plesiomonas-related research (1990 e 2017). PLoS ONE, 13, e0207655. https://doi.org/10.1371/journal.pone.0207655

    Article  CAS  Google Scholar 

  • Ekundayo, T. C., & Okoh, A. I. (2020). Systematic Assessment of Mycobacterium avium Subspecies Paratuberculosis Infections from 1911–2019: A Growth Analysis of Association with Human Autoimmune Diseases. Microorganisms, 8, 1212. https://doi.org/10.3390/microorganisms8081212

    Article  CAS  Google Scholar 

  • Ezike, C. O., & Ohen, J. N. (2018). Assessment of polycyclic aromatic hydrocarbons (PAHs) in hardwood and softwood—smoked fish. International Journal of Animal Sciences, 2(1), 1012.

    Google Scholar 

  • Fan, J. L., Shen, S., Wang, J. D., Wei, S., Zhang, X., Zhong, P., & Wang, H. (2020). Scientific and technological power and international cooperation in the field of natural hazards: A bibliometric analysis. Natural Hazards, 102(807–827), 1–21. https://doi.org/10.1007/s11069-020-03919-8

    Article  Google Scholar 

  • Fasano E., Yebra-pimentel I., & Martínez-carballo E. (2016). Profiling, distribution and levels of carcinogenic polycyclic aromatic hydrocarbons in traditional smoked plant and animal foods, Food Control 59, 581e590.

  • Ferreira, L., Rosales, E., Sanromán, M. A., & Pazos, M. (2015). Preliminary testing and design of permeable bioreactive barrier for phenanthrene degradation by Pseudomonas stutzeri CECT 930 immobilized in hydrogel matrices. Journal of Chemical Technology and Biotechnology, 90, 500–506.

    Article  CAS  Google Scholar 

  • Froehner, S., Dombroski, L. F., Machado, K. S., Scapulatempo, F. C., & Bessa, M. (2012). Estimation of bioavailability of polycyclic aromatic hydrocarbons in river sediments. International Journal of Environmental Science and Technology, 9, 409–416. https://doi.org/10.1007/s13762-012-0069-z

    Article  CAS  Google Scholar 

  • Gratia, E., Weekers, F., Margesin, R., Damico, S., Thonart, P., & Feller, G. (2009). Selection of a cold-adapted bacterium for bioremediation of wastewater at low temperatures. Extremophiles, 13(5), 763–768. https://doi.org/10.1007/s00792-009-0264-0

    Article  CAS  Google Scholar 

  • Grueiro-Noche, G., Andrade, J. M., Muniategui-Lorenzo, S., Lopez-Mahía, P., & PradaRodríguez, D. (2010). 3-Way pattern-recognition of PAHs from Galicia (NW Spain) seawater samples after the Prestige’s wreck. Environmental Pollution, 158(1), 207–214.

    Article  CAS  Google Scholar 

  • Guilak & Jacobs. (2011). The H-index: Use and overuse. Journal of Biomechanics, 44(1), 208–209.

    Article  Google Scholar 

  • Gupte A., Tripathi A., Patel H., Rudakiya D. & Gupte S. (2016). Bioremediation of polycyclic aromatic hydrocarbon (PAHs): A perspective. The Open Biotechnology Journal, 10, (Suppl-2, M9), 363–378.

  • Harmsen, J. (2007). Measuring bioavailability: From a scientific approach to standard methods. Journal of Environmental Quality, 36(5), 1420–1428. https://doi.org/10.2134/jeq2006.0492

    Article  CAS  Google Scholar 

  • Ho Y.S. (2019). Rebuttal to: “The neurotoxicity of nanoparticles: A bibliometric analysis”. Vol. 34, pp. 922–929. Toxicology and Industrial Health, 35(6): 399–402.

  • Huang, X. Q., Fan, X., Ying, W. J., & Chen, S. Y. (2019). Emerging trends and research foci in gastrointestinal microbiome. Journal of Translational Medicine, 17, 67. https://doi.org/10.1186/s12967-019-1810-x

    Article  Google Scholar 

  • Ingenbleek, L., Veyrand, B., Adegboye, A., Hossou, S. E., Koné, A. Z., Oyedele, A. D., Kisito, C. S. K. J., Dembélé, Y. K., Eyangoh, S., Verger, P., Leblanc, J., Durandb, S., Venisseau, A., Marchand, P., & Le Bizec, B. (2019). Polycyclic aromatic hydrocarbons in foods from the first regional total diet study in Sub-Saharan Africa: Contamination profile and occurrence data. Food Control, 103(2019), 133–144. https://doi.org/10.1016/j.foodcont.2019.04.006

    Article  CAS  Google Scholar 

  • Ishizaki A., Saito K., Hanioka N., Narimatsu S., & Kataoka H. (2010). Determination of polycyclic aromatic hydrocarbons in food samples by automated on-line intube solid-phase microextraction coupled with high-performance liquid chromatography-fluorescence detection. Journal of Chromatography A 1217, 5555e5563.

  • Jamhari, A. A., Sahani, M., Latif, M. T., Chan, K. M., Tan, H. S., Khan, M. F., & Tahir, N. M. (2014). Concentration and source identification of polycyclic aromatic hydrocarbons (PAHs) in PM10 of urban, industrial and semi-urban areas in Malaysia. Atmospheric Environment, 86, 16–27.

    Article  CAS  Google Scholar 

  • Jeong, S., Choi, J. Y., & Kim, J. (2011). The determinants of research collaboration modes: Exploring the effects of research and re-searcher characteristics on co-authorship. Scientometrics, 89, 967–983. https://doi.org/10.1007/s11192-011-0474-y

    Article  Google Scholar 

  • Jiang, C., Bhat, C. R., & Lam, W. H. (2020). A bibliometric overview of transportation research part B: Methodological in the past forty years (1979–2019). Transportation Research Part B: Methodological, 138, 268–291. https://doi.org/10.1016/j.trb.2020.05.016

    Article  Google Scholar 

  • Johnsen, A.R., Wick L.Y., & Harms H. (2005). Principles of microbial PAH-degradation in soil. Environment Pollution 133, 71–84. https://doi.org/10.1016/j.envpol.2004.04.015

  • Jones, T., Huggett, S., & Kamalski, J. (2011). Finding a way through the scientific literature: Indexes and measures. World Neurosurg., 76, 36–38.

    Article  Google Scholar 

  • Juhasz A. L. (2014). Bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Microbiology Australia; Under the Microscope, 199–200. https://doi.org/10.1071/MA14064

  • Kadri, T., Rouissi, T., Brar, S. K., Cledon, M., Sarma, S., & Verma, M. (2017). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. Journal of Environmental Sciences, 51, 52–74. https://doi.org/10.1016/j.jes.2016.08.023

    Article  CAS  Google Scholar 

  • Kafilzadeh, F., Shiva, A. H., & Malekpour, R. (2011). Determination of polycyclic aromatic hydrocarbons (PAHs) in water and sediments of the Kor River. Iran. Middle-East Journal of Scientific Research, 10(1), 01–07.

    CAS  Google Scholar 

  • Katz, J. S., & Martin, B. R. (1997). What is research collaboration? Research Policy, 26, 1–18.

    Article  Google Scholar 

  • Kumar, B., Verma, V. K., Gaur, R., Kumar, S., Sharma, C. S., & Akolkar, A. B. (2014). Validation of HPLC method for determination of priority polycyclic aromatic hydrocarbons (PAHs) in wastewater and sediments. Advances in Applied Science Research, 5(1), 201–209.

    Google Scholar 

  • Lawal, A. T. (2017). Polycyclic aromatic hydrocarbons. A Review. Cogent Environmental Science, 3, 1339841. https://doi.org/10.1080/23311843.2017.1339841

    Article  CAS  Google Scholar 

  • Lee, M. (2012). Analytical chemistry of polycyclic aromatic compounds. Elsevier.

    Google Scholar 

  • Li, H., Chen, J., Wu, W., & Piao, X. (2010). Distribution of polycyclic aromatic hydrocarbons in different size fractions of oil from a coke oven plant and its relationship to organic carbon content. Journal of Hazardous Materials, 176, 729–234. https://doi.org/10.1016/j.jhazmat.2009.11.095

    Article  CAS  Google Scholar 

  • Li, K., Rollins, J., & Yan, E. (2018). Web of Science use in published research and review papers 1997–2017: A selective, dynamic, cross-domain, content-based analysis. Scientometrics, 115(1), 1–20.

    Article  Google Scholar 

  • Liquori, L., Heggstad, K., Hove, T. H., & Julshman, K. (2006). Polycyclic aromatic hydrocarbons in urban soils from Beijing, China. Environmental. Science, 18, 944–950.

    Article  Google Scholar 

  • Liu, W. (2019). The data source of this study is Web of Science Core Collection? Not enough. Scientometrics, 121, 1815–1824. https://doi.org/10.1007/s11192-019-03238-1

    Article  Google Scholar 

  • Liu, W., Zheng, J., Wang, Z., Li, R., & Wu, T. (2021). A bibliometric review of ecological research on the Qinghai-Tibet Plateau, 1990–2019. Ecological Informatics, 64, 101337. https://doi.org/10.1016/j.ecoinf.2021.101337

    Article  Google Scholar 

  • Luo, L., Wang, P., Lin, L., Luan, T., Ke, L., & Tam, N. F. Y. (2014). Removal and transformation of high molecular weight polycyclic aromatic hydrocarbons in water by live and dead microalgae. Process Biochemistry, 49, 1723–1732.

    Article  CAS  Google Scholar 

  • Menzie, C. A., Potocki, B. B., & Santodonato, J. (1992). Exposure to carcinogenic PAHs in the environment. Environmental Science and Technology, 26(7), 1278–1284. https://doi.org/10.1021/es00031a002

    Article  CAS  Google Scholar 

  • Messias, J. M., da Costa, B. Z., de Lima, V. M. G., Dekker, R. F. H., Rezende, M. I., Krieger, N., et al. (2009). Screening Botryosphaeria species for lipases: Production of lipase by Botryosphaeria ribis EC-01 grown on soybean oil and other carbon sources. Enzyme and Microbial Technology, 45, 426–431.

    Article  CAS  Google Scholar 

  • Meyerholz, D. K., & Flaherty, H. A. (2017). The evolving significance and future relevance of the impact factor. Veterinary Pathology, 54(4), 721–722.

    Article  CAS  Google Scholar 

  • Miao, Y., Zhang, Y., & Yin, L. H. (2018). Trends in hepatocellular carcinoma research from 2008 to 2017: A bibliometric analysis. PeerJ, 6, e5477. https://doi.org/10.7717/peerj.5477

    Article  Google Scholar 

  • Mo, Z., Fu, H. Z., & Ho, Y. S. (2018). Highly cited articles in wind tunnel-related research: A bibliometric analysis. Environmental Science and Pollution Research, 25, 15541–15553. https://doi.org/10.1007/s11356-018-1766-z

    Article  Google Scholar 

  • Mojiri, A., Zhou, J. L., Ohashi, A., Ozaki, N., & Kindaichi, T. (2019). Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Science of the Total Environment, 696, 133971. https://doi.org/10.1016/j.scitotenv.2019.133971

    Article  CAS  Google Scholar 

  • Niemirycz, E., Gozdek, J., & Maron, D. (2006). Variability of organic carbon in water and sediments of Odra River and its tributaries. Polish Journal of Environmental Studies, 15, 557–553.

    CAS  Google Scholar 

  • Nilanjana, D., & Preethy, C. (2011). Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnol Res Int. Article ID, 941810, 13.

    Google Scholar 

  • Obayori, O. S., Salam L. B. (2010). Degradation of polycyclic aromatic hydrocarbons: Role of plasmids. Scientific Research and Essays; Special Review, 5(25), 4093–4106.

  • Ofori, S. A., Cobbina, S. J., & Doke, D. A. (2020). The occurrence and levels of polycyclic aromatic hydrocarbons (PAHs) in African environments—a systematic review. Environmental Science and Pollution Research, 27, 32389–32431. https://doi.org/10.1007/s11356-020-09428-2

    Article  CAS  Google Scholar 

  • Okai, M., Kihara, I., Yokoyama, Y., Ishida, M., Urano, N. (2015). Isolation and characterization of benzo [a] pyrene-degrading bacteria from the Tokyo Bay area and Tama River in Japan. FEMS Microbiology Letter, 362, fnv143.

  • Okaiyeto, K., & Oguntibeju, O. O. (2021). Trends in diabetes research outputs in South Africa over 30 years from 2010 to 2019: A bibliometric analysis. Saudi Journal of Biological Sciences, 28, 2914–2924. https://doi.org/10.1016/j.sjbs.2021.02.025

    Article  Google Scholar 

  • Okaiyeto, K., Ekundayo, T. C., & Okoh, A. I. (2020). Global research trends on bioflocculant potentials in wastewater remediation from 1990 to 2019 using a bibliometric approach. Letters in Applied Microbiology, 71(6), 567–579.

    Article  CAS  Google Scholar 

  • Olgun, B., Akçetin, M. Ö., Dokumacı, E. N., Yeşildağlı, B. U., Civan, M., Yurdakul, S., Erdem, A., & Doğan, G. (2018). Bibliometric analysis of publications on PAHs in different environments and sources of PAHs in soil samples of greenhouses. Conference Paper: International Agriculture, Environment and Health Congress, Aydın, Turkey, 26–28 October 2018, (pp. 164–177). Available at: https://www.researchgate.net/publication/338547304_Bibliometric_Analysis_of_Publications_on_PAHs_in_Different_Environments_and_Sources_of_PAHs_in_Soil_Samples_of_Greenhouses. Accessed: 27 May 2022.

  • Olisah, C., & Adams, J. B. (2020). Systematic mapping of organophosphate contaminant (OPC) research trends between 1990 and 2018. Environmental Geochemistry and Health, 42, 3481–3505. https://doi.org/10.1007/s10653-020-00594-3

    Article  CAS  Google Scholar 

  • Olisah, C., Okoh, O. O., & Okoh, A. I. (2018). A bibliometric analysis of investigations of polybrominated diphenyl ethers (PBDEs) in biological and environmental matrices from 1992–2018. Heliyon, 4, e00964. https://doi.org/10.1016/j.heliyon.2018.e00964

    Article  Google Scholar 

  • Olisah, C., Okoh, O. O., & Okoh, A. I. (2019). Global evolution of organochlorine pesticides research in biological and environmental matrices from 1992 to 2018: A bibliometric approach. Emerging Contaminants, 5, 157–167.

    Article  Google Scholar 

  • Omores, R. A., Wewers, F., Ikhide, P. O., Farrar, T., & Giwa, A. (2017). Spatio-temporal distribution of polycyclic aromatic hydrocarbons in urban soils in Cape Town, South Africa. International Journal of Environmental Research, 11, 189–196. https://doi.org/10.1007/s41742-017-0018-2

    Article  CAS  Google Scholar 

  • Orecchio, S. (2010). Assessment of polycyclic aromatic hydrocarbons (PAHs) in soil of a Natural Reserve (Isola delle Femmine) (Italy) located in front of a plant for the production of cement. Journal of Hazardous Materials, 173(1), 358–368.

    Article  CAS  Google Scholar 

  • Petchkaew, A. (2015). Implications of non-carcinogenic PAH-free extender oils in natural rubber based tire compounds, PhD Thesis. University of Twente, Enschede, the Netherlands. ISBB: 978-90-365-3763-6 Available online at: https://ris.utwente.nl/ws/files/6054459/thesis_A_Petchkaew.pdf

  • Pignatello, J. J., & Xing, B. (1996). Mechanisms of slow sorption of organic chemicals to natural particles. Environmental Science and Technology, 30, 1–11. https://doi.org/10.1021/es940683g

    Article  CAS  Google Scholar 

  • Plaza-Bolanos P., Frenich A.G., Vidal J.L.M. (2010). Polycyclic aromatic hydrocarbons ~in food and beverages. Analytical methods and trends. Journal of Chromatography A 1217, 6303e6326.

  • International Agency for Research in Cancer (IARC) (1985). Polynuclear aromatic compounds, Part 4, bitumens, coal tars and derived products, shale oils and soots, 35. (Lyon: IARC, 1985).

  • Purcaro G., Moret S., Conte L.S. (2013). Overview on polycyclic aromatic hydrocarbons: occurrence, legislation and innovative determination in foods. Talanta 105, 292e305.

  • Raghukumar, C., Shailaja, M., Parameswaran, P., & Singh, S. (2006). Removal of polycyclic aromatic hydrocarbons from aqueousmedia by the marine fungus NIOCC# 312: Involvement oflignin-degrading enzymes and exopolysaccharides. Indian Journal of Marine Sciences, 5(4), 373–379.

    Google Scholar 

  • Ren, X., Zeng, G., Tang, L., Wang, J., Wan, J., Liu, Y., Yu, J., Yi, H., Ye, S., & Deng, R. (2017). Sorption, transport and biodegradation—An insight into bioavailability of persistent organic pollutants in soil. Science of the Total Environment, 610–611, 1154–1163. https://doi.org/10.1016/j.scitotenv.2017.08.089

    Article  CAS  Google Scholar 

  • Ren, B. (2021). Research on Polycyclic Aromatic Hydrocarbons in Environment from 2005 to 2020: A bibliometric analysis. In IOP Conference Series: Earth and Environmental Science (Vol. 760, No. 1, p. 012050). IOP Publishing.

  • Richardson, S. D., & Aitken, M. D. (2011). Desorption and bioavailability of PAHs in contaminated soil subjected to long-term in situ biostimulation. Environmental Toxicology and Chemistry, 30(12), 2674–2681. https://doi.org/10.1002/etc.682

    Article  CAS  Google Scholar 

  • Sadiktsis, I., Bergvall, C., Johansson, C., & Westerholm, R. (2012). Automobile tires* a potential source of highly carcinogenic Dibenzopyrenes to the environment. Environmental Science & Technology, 46(6), 3326–3334.

    Article  CAS  Google Scholar 

  • Sadiktsis I. (2016). Traffic related air pollution with emphasis on particle associated polycyclic aromatic hydrocarbons: tire wear and biodiesel exhaust emissions. PhD Thesis, Department of Environmental Science and Analytical Chemistry, Stockholm University; Pp 105. Available at: http://su.diva-portal.org/smash/get/diva2:917324/FULLTEXT01.pdf. Accessed on: 30–12–2021.

  • Sakuma T, Leigh D, Seto C, Schreiber A, Wittrig R. (2011). Analysis of Polycyclic Aromatic Hydrocarbons (PAH), Alkylated Derivatives, and Photo-degradation Products in Environmental and Food Samples Using LC-FLD-MS/MS with Q TRAP® Technology [Internet]. Available from: https://sciex.com/Documents/brochures/PAH_seafood_water_QTRAP4k_4520411.pdf

  • Schwarzenbach, R. P., Escher, B. L., Fenner, K., Hofstetter, T. B., Johnson, C. A., Von Gunten, U., & Wehrli, B. (2006). The challenge of micropollutants in aquatic systems. Science, 313(5790), 1072–1077.

    Article  CAS  Google Scholar 

  • Semerjian, L., Okaiyeto, K., Ojemaye, M. O., Ekundayo, T. C., Igwaran, A., & Okoh, A. I. (2021). Global Systematic Mapping of Road Dust Research from 1906 to 2020: Research Gaps and Future Direction. Sustainability, 13(20), 11516.

    Article  Google Scholar 

  • Semple, K. T., Morriss, A. W. J., & Paton, G. I. (2003). Bioavailability of hydrophobic organic contaminants in soils: Fundamental concepts and techniques for analysis. European Journal of Soil Science, 54, 809–818. https://doi.org/10.1046/j.1351-0754.2003.0564.x

    Article  CAS  Google Scholar 

  • Semple KT, Doick KJ, Jones KC, Burauel P, Craven A, Harms H. (2004). Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environmental Science & Technology, 38(12): 228A-31A. [https://doi.org/10.1021/es040548w]

  • Sharma, N., Bairwa, M., Gowthamghosh, B., Gupta, S. D., & Mangal, D. K. (2018). A bibliometric analysis of the published road traffic injuries research in India, post-1990. Health Research Policy and Systems, 16, 18. https://doi.org/10.1186/s12961-018-0298-9

    Article  Google Scholar 

  • Sibeko, M., Adeniji, A. O., Okoh, O. O., & Shanganyane, H. P. (2020). Trends in the management of waste tyres and recent experimental approaches in the analysis of polycyclic aromatic hydrocarbons (PAHs) from rubber crumbs. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-09703-2(Online)

    Article  Google Scholar 

  • Sibiya, P. N. (2012). Modification, development and application of extraction methods for PAHs in sediments and water [thesis]. University of the Witwatersrand, Johannesburg.

    Google Scholar 

  • Simister, R.L., Poutasse, C.M., Thurston, A.M., Reeve, J.L., Baker, M.C., White, H.K., 2015. Degradation of oil by fungi isolated from Gulf of Mexico beaches. Mar. Pollut. Bull.

  • Singh, P., Parmar, D., & Pandya, A. (2015). Parametric optimization of media for the crude oil degrading bacteria isolated from crude oil contaminated site. International Journal of Current Microbiology and Applied Sciences, 4, 322–328.

    CAS  Google Scholar 

  • Singh L., Varshney J.G., & Agarwal T. (2016). Polycyclic aromatic hydrocarbons' formation and occurrence in processed food. Food Chemistry, 199, 768e781. https://doi.org/10.1016/j.foodchem.2015.12.074.

  • Sivankalai, S., Virumandi, A., Sivasekaran, K., Bala, S. B., Balamurugan, B., Sharmila, M., & Kaladevi, P. (2021). Scientometric analysis and visualization of Astrovirus based on R-packages. Library Philosophy and Practice, 3(1), 1–15.

    Google Scholar 

  • Soclo, H. H., Garrigues, P., & Ewald, M. (2000). Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: Case studies in Cotonou (Benin) and Aquitaine (France) areas. Marine Pollution Bulletin, 40(5), 387–396.

    Article  CAS  Google Scholar 

  • Soltani, N., Keshavarzi, B., Moore, F., Tavakol, T., Lahijanzadeh, A. R., Jaafarzadeh, N., & Kermani, M. (2015). Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis, Iran. Science of the Total Environment, 505, 712–723. https://doi.org/10.1016/j.scitotenv.2014.09.097

    Article  CAS  Google Scholar 

  • Sun, J.-H., Wang, G.-L., Chai, Y., Zhang, G., Li, J., & Feng, J. (2009). Distribution of polycyclic aromatic hydrocarbons (PAHs) in henan reach of the Yellow river, Middle China. Ecotoxicology and Environmental Safety, 72(5), 1614–1624.

    Article  CAS  Google Scholar 

  • Synnestvedt, M. B., Chen, C., & Holmes, J. H. (2005). CiteSpace II: Visualization and knowledge discovery in bibliographic databases. In AMIA annual symposium proceedings/AMIA symposium. AMIA symposium.

  • Tobiszewski, M., & Namiesnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162, 110–119. https://doi.org/10.1016/j.envpol.2011.10.025

    Article  CAS  Google Scholar 

  • Usman, M., & Ho, Y. S. (2020). A bibliometric study of the Fenton oxidation for soil and water remediation. The Journal of Environmental Management, 270, 110886. https://doi.org/10.1016/j.jenvman.2020.110886

    Article  CAS  Google Scholar 

  • Venkatesagowda, B., Ponugupaty, E., Barbosa, A. M., & Dekker, R. F. H. (2012). Diversity of plant oil seed-associated fungi isolated from seven oil-bearing seeds and their potential for the production of lipolytic enzymes. World Journal of Microbiology & Biotechnology, 28, 71–80.

    Article  CAS  Google Scholar 

  • Vetrimurugan, E., Brindha, K., Elango, L., & Ndwandwe, O. M. (2017). Human exposure risk to heavy metals through groundwater used for drinking in an intensively irrigated river delta. Applied Water Science, 7(6), 3267–3280.

    Article  CAS  Google Scholar 

  • Vieira, G. A. L., Magrini, M. J., Bonugli-Santos, R. C., Rodrigues, M. V. N., & Sette, L. D. (2018). Polycyclic aromatic hydrocarbons degradation by marine-derived basidiomycetes: Optimization of the degradation process. Brazilian Journal of Microbiology, 49, 749–756. https://doi.org/10.1016/j.bjm.2018.04.007

    Article  CAS  Google Scholar 

  • Wang, W., Wang, L., & Shao, Z. (2018). Polycyclic aromatic hydrocarbon (PAH) degradation pathways of the obligate marine PAH degrader Cycloclasticus sp. strain P1. Applied and Environment Microbiology, 84, e01261-e1318. https://doi.org/10.1128/AEM.01261-18

    Article  CAS  Google Scholar 

  • Wang N., Guo Y., Wang L., Liang X., Liu S., & Jiang S. (2014). Preparation of an aminopropyl imidazole-modified silica gel as a sorbent for solid-phase extraction of carboxylic acid compounds and polycyclic aromatic hydrocarbons. Analyst 139, 2531e2537. https://doi.org/10.1039/c4an00039k.

  • Wei, X., Yang, F., Chen, D., Li, J., Shi, X., Li, B., & Zhang, C. (2020). Analyzing nanoparticle-induced neurotoxicity: A bibliometric analysis. Toxicology and Industrial Health, 36(1), 22–29.

    Article  Google Scholar 

  • Weststrate, J., Dijkstra, G., Eshuis, J., Gianoli, A., & Rusca, M. (2018). The sustainable development goal on water and sanitation: Learning from the Millennium development goals. Social Indicators Research (online). https://doi.org/10.1007/s11205-018-1965-5

    Article  Google Scholar 

  • Wild, S. R., & Jones, K. C. (1995). Polynuclear aromatic hydrocarbons in the United Kingdom environment: A preliminary source inventory and budget. Environmental Pollution, 88, 91–108.

    Article  CAS  Google Scholar 

  • Wilson, N. K., Chuang, J. C., & Lyu, C. (2001). Levels of persistent organic pollutants in several child day care centers. Journal of Exposure Science and Environmental Epidemiology, 11(6), 449–458. https://doi.org/10.1038/sj.jea.7500190

    Article  CAS  Google Scholar 

  • Yamada, M., Takada, H., Toyoda, K., Yoshida, A., Shibata, A., Nomura, H., Wada, M., Nishimura, M., Okamoto, K., & Ohwada, K. (2003). Study on the fate of petroleumderived polycyclic aromatic hydrocarbons (PAHs) and the effect of chemical dispersant using an enclosed ecosystem, mesocosm. Marine Pollution Bulletin, 47(1), 105–113.

    Article  CAS  Google Scholar 

  • Yang, J., Zhao, Y., Li, M., Du, M., Li, X., & Li, Y. (2019). A review of a class of emerging contaminants: The classification, distribution, intensity of consumption, synthesis routes, environmental effects and expectation of pollution abatement to organophosphate flame retardants (OPFRs). International Journal of Molecular Sciences. https://doi.org/10.3390/ijms20122874

    Article  Google Scholar 

  • Young, D., Rice, J., Martin, R., Lindquist, E., Lipzen, A., Grigoriev, I., & Hibbett, D. (2015). Degradation of bunker C fuel oil by white-rot fungi in sawdust cultures suggests potential applications in bioremediation. PLoS ONE, 10, e0130381.

    Article  Google Scholar 

  • Zarrabeitia-Bilbao, E., Álvarez-Meaza, I., Río-Belver, R., & Garechana-Anacabe, G. (2019). Additive manufacturing technologies for biomedical engineering applications: Research trends and scientific impact. Elprofesional De La Información, 28(2), e280220.

    Google Scholar 

  • Zhang, X. L., Tao, S., Liu, W. X., Yang, Y., Zuo, Q., & Liu, S. Z. (2005). Source diagnostics of polycyclic aromatic hydrocarbons based on species ratios: A multimedia approach. Environmental Science and Technology, 39, 9109–9114. https://doi.org/10.1021/es0513741

    Article  CAS  Google Scholar 

  • Zhao, Y., Cong, L., & Lukiw, W. J. (2017). Lipopolysaccharide (LPS) accumulates in neocortical neurons of Alzheimer’s disease (AD) brain and impairs transcription in human neuronal-glial primary co-cultures. Frontiers in Aging Neuroscience, 9, 407. https://doi.org/10.3389/fnagi.2017.00407

    Article  CAS  Google Scholar 

  • Zhao J., Wang Z., Zhao Q., & Xing B. (2014). Adsorption of phenanthrene on multilayer graphene as affected by surfactant and exfoliation. Environmental Science & Technology 48, 331e339. https://doi.org/10.1021/es403873r.

  • Zheng, T., Wang, J., Wang, Q., Meng, H., & Wang, L. (2017). Research trends in electrochemical technology for water and wastewater treatment. Applied Water Science, 7(1), 13–30.

    Article  CAS  Google Scholar 

  • Zou, Y., Luo, Y., Zhang, J., Xia, N., Tan, G., & Huang, C. (2019). Bibliometric analysis of oncolytic virus research, 2000 to 2018. Medicine, 98(35), e16817. https://doi.org/10.1097/md.0000000000016817

    Article  Google Scholar 

  • Zurita, G., Shukla, A. K., Pino, J. A., Merigo, J. M., Lobos-Ossandon, V., & Muhuri, P. K. (2020). A bibliometric overview of the journal of network and computer applications between 1997 and 2019. Journal of Network and Computer Applications, 102695. https://doi.org/10.1016/j.jnca.2020.102695

  • Zyoud, S. H. (2017). Global toxocariasis research trends from 1932 to 2015: A bibliometric analysis. Health Research Policy and Systems 15, 15. https://doi.org/10.1186/s12961-017-0178-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors duly acknowledge the supports received from the National University of Lesotho; South Africa Medical Research Council; Cape Peninsula University of Technology, South Africa and the University of Sharjah, UAE.

Author information

Authors and Affiliations

Authors

Contributions

AOA, KO, MJG, EBT, LS, and AIO contributed to conceptualization; AOA and KO contributed to methodology, software, validation, and data curation; AOA and KO contributed to writing—original draft preparation; MJG, EBT, LS, and AIO contributed to writing—review and editing; LS and AIO contributed to funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Abiodun O. Adeniji.

Ethics declarations

Conflict of interest

The authors wish to declare that there is no conflict of interest with regards to the publication of this manuscript.

Animal research

Not applicable in this study.

Consent to participate

Not applicable in this study.

Consent to publish

Not applicable in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeniji, A.O., Okaiyeto, K., George, M.J. et al. A systematic assessment of research trends on polycyclic aromatic hydrocarbons in different environmental compartments using bibliometric parameters. Environ Geochem Health 45, 1289–1309 (2023). https://doi.org/10.1007/s10653-022-01353-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01353-2

Keywords

Navigation