Skip to main content

Advertisement

Log in

Multiple exposure pathways and health risk assessment of potentially harmful elements for children and adults living in a coal region in Brazil

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Energy generated by coal can contaminate the environment by releasing toxic elements, including metals. The human health risk assessment (HHRA) associated with geographic information system (GIS) tools can assist the management of contaminated areas, such as coal mining areas. The objective of the study was to carry out the assessment and spatialization of the risk to human health of potentially hazards elements (PHEs) in the soil for children and adults, from multiple exposure routes (oral, inhalation and dermal) in the Candiota mines, largest coal mining region of Brazil. The non-carcinogenic risks (HQ) of PHEs (Cu, Pb, Zn, Ni, Cr, Fe, Mn, Cd, As and Se) and carcinogenic risks of As were estimated and spatialized. The results revealed a risk for children exposure to Mn, with greatest contribution through dermal route. Mn (HQderm 72.41–96.09% and HQinh 40.84–82.52%) and Fe (HQo 43.90–81.44%) were the metals with greatest contribution to human health risk among studied population. As did not present carinogenic risk to adults. The spatial distribution of non-carcinogenic risk showed that Cr, As, Fe, Pb, Ni, Zn and Cu have higher HInc close to the coal mining areas, while Mn, Se and Cd have the highest HInc values in surrounding municipalities (Pinheiro Machado; Pedras Altas and Hulha Negra). The use of HHRA associated with GIS tools provides important elements for decision-making in the management of contaminated sites, indicating chemical elements, locations, routes of exposure and priority target populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adhikari, K., & Mal, U. (2021). Evaluation of contamination of manganese in groundwater from overburden dumps of Lower Gondwana coal mines. Environmental Earth Science, 80, 23. https://doi.org/10.1007/s12665-020-09293-9

    Article  CAS  Google Scholar 

  • AGENCY FOR TOXIC SUBSTANCES AND DISEASE REGISTRY. Toxicological profile for arsenic. Atlanta: ATSDR, 2005.

  • Ahern, M., Mullett, M., MacKay, K., Hamilton, C. (2011). Residence in coal mining areas and low-birth-weight outcomes. Maternal and Child Health Journal, 15, 974–979. https://doi.org/10.1007/s10995-009-0555-1

  • Ahmad, I., et al. (2019). Traffic-related lead pollution in roadside soils and plants in Khyber Pakhtunkhwa, Pakistan: Implications for human health. International Journal of Environmetal Science and Technology, 16, 8015–8022. https://doi.org/10.1007/s13762-019-02216-7

    Article  CAS  Google Scholar 

  • ALMEIDA, E. (2012) Econometria espacial. Campinas, SP: Ed. Al´ınea, p. 498.

  • Amster, E., Levy, C.L., (2019). Impact of coal-fired power plant emissions on children’s health: a systematic review of the epidemiological literature. International Journal of Environmental Research and Public Health, 16 (11), 2008. https://doi.org/10.3390/ijerph16112008

  • ANEEL, AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA. (2008). Fontes Não renováveis: Carvão Mineral. In: ANEEL Atlas de Energia Elétrica do Brasil. Brasília, pp. 129–141.

  • Antoniadis, V., Shaheen, S. M., Levizou, E., Shahid, M., Niazi, N. K., Vithanage, M., Ok, Y. S., Bolan, N., & Rinklebe, J. (2019). A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment?-A review. Environment international., 127, 819–47. https://doi.org/10.1016/j.envint.2019.03.039

    Article  CAS  Google Scholar 

  • BAILEY, T. C. & GATRELL, A. C. (1995) Interactive spatial data analysis. Essex: Longman Scientifific: Longman Scientifific & Technical Essex, p. 413.

  • Barlow, P. J. (1983). A pilot study on the metal levels in the hair of hyperactive children. Medical Hypotheses, 11(3), 309–318.

    Article  CAS  Google Scholar 

  • Bigliardi, A. P., Fernandes, C. L. F., Pinto, E. A., dos Santos, M., Garcia, E. M., Baisch, P. R. M., Soares, M. C. F., Muccillo-Baisch, A. L., & Rodrigues, F. M. (2021). Blood markers among residents from a coal mining area. Environmental Science and Pollution Research, 28(2), 1409–1416. https://doi.org/10.1007/s11356-020-10400-3

    Article  CAS  Google Scholar 

  • Bouchard, M., Laforest, F., Vandelac, L., Bellinger, D., & Mergler, D. (2007). Hair manganese and hyperactive behaviors: pilot study of school-age children exposed through tap water. Environmental Health Perspectives, 115(1), 122–127. https://doi.org/10.1289/ehp.9504

    Article  CAS  Google Scholar 

  • Broadhurst, C. L., & Domenico, P. (2006). Clinical studies on chromium picolinate supplementation in diabetes mellitus-a review. Diabetes Technology & Eerapeutics, 8(6), 677–687.

    Article  CAS  Google Scholar 

  • Brum, R. L. (2021). Recommended guidance and checklist for human health risk assessment of metal (loid) s in soil. Exposure and Health. https://doi.org/10.1007/s12403-021-00440-6

    Article  Google Scholar 

  • Casey, J. A., Karasek, D., Ogburn, E. L., et al (2018). Retirements of coal and oil power plants in California: association with reduced preterm birth among populations nearby. The American Journal of Epidemiology, 187, 1586–1594. https://doi.org/10.1093/aje/kwy110

  • CETESB. (2018). Manual de Gerenciamento de Áreas Contaminadas. From https://cetesb.sp.gov.br/areas-contaminadas/manual-de-gerenciamento-de-areas-contaminadas/

  • Chaplygin, V., Mandzhieva, S., Minkina, T., Sushkova, S., Kizilkaya, R., Gülser, C., Zamulina, I., Kravtsova, N., Lobzenko, I., & Chernikova, N. (2021). Sustainability of agricultural and wild cereals to aerotechnogenic exposure. Environmental Geochemistry and Health, 43(4), 1427–1439. https://doi.org/10.1007/s10653-019-00411-6

    Article  CAS  Google Scholar 

  • Chen, H., Teng, Y., Sijin, L., Wang, Y., & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. Science of The Total Environment, 512–513, 143–153. https://doi.org/10.1016/j.scitotenv.2015.01.025

    Article  CAS  Google Scholar 

  • CONAMA. (2018). RESOLUÇÃO Nº 420, DE 28 DE DEZEMBRO DE 2009.

  • da Silva Júnior, F. M., Honscha, L. C., Brum, R. L., Ramires, P. F., Tavella, R. A., Fernandes, C. L., Penteado, J. O., Bonifácio, A. S., Volcão, L. M., Santos, M., & Coronas, M. V. (2020). Air quality in cities of the extreme south of Brazil. Ecotoxicol Environ Contam., 15(1), 61–7. https://doi.org/10.5132/eec.2020.01.08

    Article  Google Scholar 

  • da Silva Júnior, F. M., Ramires, P. F., Dos Santos, M., Seus, E. R., Soares, M. C., Muccillo-Baisch, A. L., Mirlean, N., & Baisch, P. R. (2019). Distribution of potentially harmful elements in soils around a large coal-fired power plant. Environmental Geochemistry and Health., 41(5), 2131–43. https://doi.org/10.1007/s10653-019-00267-w

    Article  CAS  Google Scholar 

  • da Silva Júnior, F. M., Silva, P. F., Garcia, E. M., Klein, R. D., Peraza-Cardoso, G., Baisch, P. R., Vargas, V. M., & Muccillo-Baisch, A. L. (2013). Toxic effects of the ingestion of water-soluble elements found in soil under the atmospheric influence of an industrial complex. Environmental Geochemistry and Health., 35(3), 317–31.

    Article  Google Scholar 

  • Da Silva Júnior, F. M. R. (2017). Genotoxicity in Brazilian coal miners and its associated factors. Human & Experimental Toxicology, 37(9), 891–900. https://doi.org/10.1177/0960327117745692

    Article  CAS  Google Scholar 

  • Da Silva Júnior, F. M. R. (2020). Brazil:“The Continent” That Does Not Look at Its Ground. Environmental Toxicology and Chemistry, 39(10), 1859–1860.

    Article  Google Scholar 

  • De Miguel, E., Iribarren, I., Chacón, E., Ordoñez, A., & Charlesworth, S. (2007). Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere, 66(3), 505–513. https://doi.org/10.1016/j.chemosphere.2006.05.065

    Article  CAS  Google Scholar 

  • Dehghani, S., Moore, F., Keshavarzi, B., & Beverley, A. H. (2017). Health risk implications of potentially toxic metals in street dust and surface soil of Tehran, Iran. Ecotoxicology and Environmental Safety, 136, 92–103. https://doi.org/10.1016/j.ecoenv.2016.10.037

    Article  CAS  Google Scholar 

  • Do Silva Pinto, E. A., Garcia, E. M., de Almeida, K. A., Fernandes, C. F., Tavella, R. A., Soares, M. C., Baisch, P. R., Muccillo-Baisch, A. L., & da Silva Júnior, F. M. (2017). Genotoxicity in adult residents in mineral coal region a cross-sectional study. Environment Science and Pollution Research, 24(20), 16806–16814. https://doi.org/10.1007/s11356-017-9312-y

    Article  CAS  Google Scholar 

  • dos Santos, M., Penteado, J. O., Baisch, P. R. M., Soares, B. M., Muccillo-Baisch, A. L., Rodrigues, F. M., & da Silva Júnior. (2020). Selenium dietary intake, urinary excretion, and toxicity symptoms among children from a coal mining area in Brazil. Environmental Geochemistry and Health, 43(1), 65–75. https://doi.org/10.1007/s10653-020-00672-6

    Article  CAS  Google Scholar 

  • dos Santos, M., Penteado, J. O., Soares, M. C. F., Muccillo-Baisch, A. L., & Da Silva-Júnior, F. M. R. (2019). Association between DNA damage, dietary patterns, nutritional status, and non-communicable diseases in coal miners. Environmental Science and Pollution Research, 26(15), 15600–15607. https://doi.org/10.1007/s11356-019-04922-8

    Article  CAS  Google Scholar 

  • Dos Santos, M., Ramires, P. F., Gironés, M. C. R., Armendáriz, M. D. C. R., Montelongo, S. P., Baisch-Muccillo, A. L., & Da Silva Júnior, F. M. R. (2020). Multiple exposure pathways and health risk assessment of selenium for children in a coal mining area. Environmental Science and Pollution Research International. https://doi.org/10.1007/s11356-020-11514-4

    Article  Google Scholar 

  • Du, Y., Gao, B., Zhou, H., Ju, X., Hoa, H., & Yin, S. (2013). Health risk assessment of heavy metals in road dusts in Urban Parks of Beijing, China. Procedia Environmental Science, 18, 299–309.

    Article  CAS  Google Scholar 

  • EPA. (1989). Risk assessment guidance for superfund, Volume 1, Part A. Office of Emergency and remedial response, Washington, D.C. EPA/540/1–89/002. http://www.epa.gov/oswer/riskassessment/ragsa/index.htm

  • EPA (2001a). Risk Assessment Guidance for Superfund: Process for Conducting Probabilistic Risk Assessment. Vol III - Part A. Office of Emergency and Remedial Response Washington, DC.

  • EPA. (2001b). Drinking water standards and health advisories.

  • EPA. (2002). Supplemental Guidance for developing soil screening levels for superfund sites

  • EPA. (2004). Air Quality criteria for particulate matter: Volume II. Office of research and development, Washington, D.C. EPA/600/P-95/001bF.

  • EPA (2011) Exposure factors handbook: 2011 Edition, 2011. USEPA, pp. 1–1466.

  • EPA Agency environmental protection (2015) Selenium compounds. technology transfer network. air toxics web site.

  • EPA (2016). Agency Environmental protection National emissions inventory.

  • EPA. (2018). Office of research and development. update for chapter 5 of the exposure factors handbook: Soil and dust ingestion. Washington: United States environmental protection agency.

  • Ericson, J. E., Crinella, F. M., Alison Clarke-Stewart, K., Allhusen, V. D., Chan, T., & Robertson, R. T. (2007). Prenatal manganese levels linked to childhood behavioral disinhibition. Neurotoxicology and Teratology, 29(2), 181–187. https://doi.org/10.1016/j.ntt.2006.09.020

    Article  CAS  Google Scholar 

  • George, A., Shen, B., Kang, D., Yang, J., & Luo, J. (2020). Emission control strategies of hazardous trace elements from coal-fired power plants in China. Journal of Environmental Sciences, 93, 66–90. https://doi.org/10.1016/j.jes.2020.02.025

    Article  CAS  Google Scholar 

  • Goodarzi, F. (2006). Characteristics and composition of fly ash from Canadian coal-fired power plants. Fuel, 85(10–11), 1418–1427.

    Article  CAS  Google Scholar 

  • Guilarte, T. R., McGlothan, J. L., Degaonkar, M., Chen, M.-K., Barker, P. B., Syversen, T., & Schneider, J. S. (2006). Evidence for cortical dysfunction and widespread manganese accumulation in the nonhuman primate brain following chronic manganese exposure: a 1H-MRS and MRI study. Toxicological Sciences, 94(2), 351–358. https://doi.org/10.1093/toxsci/kfl106

    Article  CAS  Google Scholar 

  • Guo, G., Fengchang, W., Xie, F., & Zhang, R. (2012). Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China. Journal of Environmental Sciences, 24(3), 410–418. https://doi.org/10.1016/S1001-0742(11)60762-6

    Article  CAS  Google Scholar 

  • Hernández, D., Bonilla Escamilla-Núñez, C., Mergler, D., Rodríguez-Dozal, S., Cortez-Lugo, M., Montes, S., Tristán-López, L.A. Catalán-Vázquez, M. Schilmann, A., & Riojas-Rodriguez, Horacio JO. (2016). Effects of manganese exposure on visuoperception and visual memory in schoolchildren. NeuroToxicology, 57, 230–240. https://doi.org/10.1016/j.neuro.2016.10.006

  • Huang, Y., Wang, Q., Gao, J., Lin, Z., Bañuelos, G., Yuan, L., & Yin, X. (2013). Daily dietary selenium intake in a high selenium area of Enshi, China. Nutrients, 5(3), 700–710. https://doi.org/10.3390/nu5030700

    Article  CAS  Google Scholar 

  • Hubbs-Tait, L., Nation, J. R., Krebs, N. F., & Bellinger, D. C. (2005). Neurotoxicants, micronutrients, and social environments: Individual and combined effects on children’s development. Psychological Science in the Public Interest, 6(3), 57–121. https://doi.org/10.1111/j.1529-1006.2005.00024.x

    Article  Google Scholar 

  • Ihedioha, N., Ukoha, P. O., & Ekere, N. R. (2017). Ecological and human health risk assessment of heavy metal contamination in soil of a municipal solid waste dump in Uyo, Nigeria. Environmental Geochemistry and Health, 39(3), 497–515.

    Article  CAS  Google Scholar 

  • International Agency for Research on Cancer - IARC. 2020. IARC monographs on the identification of carcinogenic hazards to humans. From https://monographs.iarc.who.int/agents-classified-by-the-iarc/.

  • Jiang, X. (1997). Potencial ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump. Natural Hazards and Earth System Sciences, 2, 1599–1610.

    Google Scholar 

  • Jiang, Y., Chao, S., Liu, J., Yang, Y., Chen, Y., Zhang, A., & Cao, H. (2017). Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere, 168, 1658–1668. https://doi.org/10.1016/j.chemosphere.2016.11.088

    Article  CAS  Google Scholar 

  • Kalkreuth, W. (2006). Petrology and chemistry of Permian coals from the Parana´ Basin: 1. Santa Terezinha, Leão-Butia and Candiota Coalfifields, Rio Grande do Sul Brazil. International Journal of Coal Geology, 68(1–2), 79–116.

  • Kawahara, M., & Kato-Negishi, M. (2011). Link between aluminum and the pathogenesis of Alzheimer’s disease: the integration of the aluminum and amyloid cascade hypotheses. International Journal of Alzheimer’s Disease. https://doi.org/10.4061/2011/276393

    Article  Google Scholar 

  • Klaassen, C. D. (2012). Fundamentos em toxicologia de casarett e doull. McGrawHill.

    Google Scholar 

  • Kravchenko, J., & Lyerly, H. K. (2018). The impact of coal-powered electrical plants and coal ash impoundments on the health of residential communities. North Carolina Medical Journal, 79(5), 289–300.

    Article  Google Scholar 

  • Kullar, S. S., Shao, K., Surette, C., Foucher, D., Mergler, D., Cormier, P., Bellinger, D. C., Barbeau, B., Sauvé, S., & Bouchard, M. F. (2019). A benchmark concentration analysis for manganese in drinking water and IQ deficits in children. Environment International, 130, 104889. https://doi.org/10.1016/j.envint.2019.05.083

    Article  CAS  Google Scholar 

  • Kusin, F. M., Azani, N. N. M., Hasan, S. N. M. S., & Sulong, N. A. (2018). Distribution of heavy metals and metalloid in surface sediments of heavily-mined area for bauxite ore in Pengerang, Malaysia and associated risk assessment. CATENA, 165, 454–464. https://doi.org/10.1016/j.catena.2018.02.029

    Article  CAS  Google Scholar 

  • Lamm, S. H., Li, J., Robbins, S. A., et al (2015).Are residents of mountain-top mining counties more likely to have infants with birth defects? The West Virginia experience. Birth Defects Research Part A - Clinical and Molecular Teratology, 103, 76–84. https://doi.org/10.1002/bdra.23322

  • Liao, Y., Wang, J., Wu, J., et al (2010) Spatial analysis of neural tube defects in a rural coal mining area. International Journal of Environmental Health Research, 20, 439–450. https://doi.org/10.1080/09603123.2010.491854

  • Liu, Y., Nguyen, M., Robert, A., & Meunier, B. (2019). Metal ions in alzheimer’s disease: A key role or not? Accounts of Chemical Research, 52(7), 2026–2035. https://doi.org/10.1021/acs.accounts.9b00248

    Article  CAS  Google Scholar 

  • Luo, X., Ren, B., Hursthouse, A. S., Thacker, J. R. M., & Wang, Z. (2020). Soil from an abandoned manganese mining area (Hunan, China): Significance of health risk from potentially toxic element pollution and its spatial context. International Journal of Environmental Research and Public Health, 17(18), 6554. https://doi.org/10.3390/ijerph17186554

    Article  CAS  Google Scholar 

  • Miao, F., Zhang, Y., Li, Y., Fang, Q., & Zhou, Y. (2022). Implementation of an integrated health risk assessment coupled with spatial interpolation and source contribution: A case study of soil heavy metals from an abandoned industrial area in Suzhou, China. Stochastic Environmental Research and Risk Assessment. https://doi.org/10.1007/s00477-021-02146-2

    Article  Google Scholar 

  • Minkina, T. (2020). Environmental and human health risk assessment of potentially toxic elements in soils around the largest coal-fired power station in Southern Russia. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-020-00666-4

    Article  Google Scholar 

  • Müller, L., Ramires, P. F., dos Santos, M., Coronas, M. V., Lima, J. V., Dias, D., Muccillo-Baisch, A. L., Baisch, P. R. M., & da Silva Júnior, F. M. R. (2021). Human health risk assessment of arsenic in a region influenced by a large coal-fired power plant. International Journal of Environmental Science and Technology, 19(1), 281–288. https://doi.org/10.1007/s13762-021-03167-8

    Article  CAS  Google Scholar 

  • Nag, R., et al. (2022). A GIS study to rank Irish agricultural lands with background and anthropogenic concentrations of metal (loid) s in soil. Chemosphere, 286, 131928. https://doi.org/10.1016/j.chemosphere.2021.131928

    Article  CAS  Google Scholar 

  • Neogi, B., Tiwari, A. K., Singh, A. K., & Pathak, D. D. (2018). Evaluation of metal contamination and risk assessment to human health in a coal mine region of India: A case study of the North Karanpura coalfield. Human and Ecological Risk Assessment: An International Journal, 24(8), 2011–2023. https://doi.org/10.1080/10807039.2018.1436434

    Article  CAS  Google Scholar 

  • Park, R. M., & Berg, S. L. (2018). Manganese and neurobehavioral impairment. A preliminary risk assessment. Neurotoxicology, 64, 159–165. https://doi.org/10.1016/j.neuro.2017.08.003

    Article  CAS  Google Scholar 

  • Penteado, J. O., et al. (2021). Health risk assessment in urban parks soils contaminated by metals, Rio Grande city (Brazil) case study. Ecotoxicology and Environmental Safety., 298, 111737. https://doi.org/10.1016/j.ecoenv.2020.111737

    Article  CAS  Google Scholar 

  • Pires, M., & Querol, X. (2004). Characterization of Candiota (south Brazil) coal and combustion by-product. International Journal of Coal Geology, 60, 57–72.

    Article  CAS  Google Scholar 

  • Plant A. & Thornton, I. (1983) Geochemistry applied to agriculture. Applied Environ mental Geochemistry, I. (ornton, Ed., pp. 231–266, Academic Press, London, UK, 1st edition.

  • Rodriguez-Iruretagoiena, A., Fdez-Ortiz, S., de Vallejuelo, A., Gredilla, C. G., Ramos, M. L. S., Oliveira, G. A., de Diego, A., Madariaga, J. M., & Silva, L. F. O. (2015). Fate of hazardous elements in agricultural soils surrounding a coal power plant complex from Santa Catarina (Brazil). Science of The Total Environment, 508, 374–382. https://doi.org/10.1016/j.scitotenv.2014.12.015

    Article  CAS  Google Scholar 

  • Royer A. & Sharman T. Copper Toxicity. (2020) In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan–. Neuropathological lesions Ejaz HW, Wang W, Lang M. Copper Toxicity Links to Pathogenesis of Alzheimer's Disease and Therapeutics Approaches. Int J Mol Sci. 21 (20):7660. doi: https://doi.org/10.3390/ijms21207660.

  • Schneider, J. S., et al. (2006). Effects of chronic manganese exposure on cognitive and motor functioning in non-human primates. Brain Research, 118(1), 222–231. https://doi.org/10.1016/j.brainres.2006.08.054

    Article  CAS  Google Scholar 

  • Senior, C., Granite, E., Linak, W., & Seames, W. (2020). Chemistry of trace inorganic elements in coal combustion systems: A century of discovery. Energy & Fuels, 34(12), 15141–15168.

    Article  CAS  Google Scholar 

  • Škrbić, B. D., Đurišić-Mladenović, N., Tadić, ĐJ., & Cvejanov, J. Đ. (2017 Jul). Polycyclic aromatic hydrocarbons in urban soil of Novi Sad, Serbia: Occurrence and cancer risk assessment. Environmental Science and Pollution Research International, 24(19), 16148–16159. https://doi.org/10.1007/s11356-017-9194-z

    Article  CAS  Google Scholar 

  • Škrbić, B. D., & Marinković, V. (2019). Occurrence, seasonal variety of organochlorine compounds in street dust of Novi Sad, Serbia, and its implication for risk assessment. Science of the Total Environment, 662, 895–902. https://doi.org/10.1016/j.scitotenv.2019.01.133

    Article  CAS  Google Scholar 

  • Swaine, D. J. (1990). Trace elements in coal (p. 278). Butterworths.

    Google Scholar 

  • Swaine, D. J., & Goodarzi, F. (1995). Environmental aspects of trace elements in coal (p. 312). Kluwer Academic Zˇ. Publishers.

    Book  Google Scholar 

  • Tang, Q., Liu, G., Yan, Z., & Sun, R. (2012). Distribution and fate of environmentally sensitive elements (arsenic, mercury, stibium and selenium) in coal-fifired power plants at Huainan, Anhui, China. Fuel, 95, 334–339. https://doi.org/10.1016/j.fuel.2011.12.052

  • Teixeira, E. C., Migliavacca, D., Filho, S. P., Machado, A. C. M., & Dallarosa, J. B. (2008). Study of wet precipitation and its chemical composition in South of Brazil. Anais da Academia Brasileira de Ciências, 80(2), 381–395. https://doi.org/10.1590/S0001-37652008000200016

    Article  CAS  Google Scholar 

  • Tolins, M., Ruchirawat, M., & Landrigan, P. (2014). The developmental neurotoxicity of arsenic: Cognitive and behavioral consequences of early life exposure. Annals of Global Health, 80(4), 303. https://doi.org/10.1016/j.aogh.2014.09.005

    Article  Google Scholar 

  • Tong, S., Li, H., Wang, L., Tudi, M., & Yang, L. (2020). Concentration, spatial distribution, contamination degree and human health risk assessment of heavy metals in urban soils across china between 2003 and 2019—a systematic review. International Journal of Environmental Research and Public Health, 17(9), 3099. https://doi.org/10.3390/ijerph17093099

    Article  CAS  Google Scholar 

  • Vinceti, M., Filippini, T., Cilloni, S., Bargellini, A., Vergoni, A. V., Tsatsakis, A., & Ferrante, M. (2017). Health risk assessment of environmental selenium: emerging evidence and challenges. Molecular Medicine Reports, 15(5), 3323–3335. https://doi.org/10.3892/mmr.2017.6377

    Article  CAS  Google Scholar 

  • Vinceti, M., Filippini, T., & Wise, L. A. (2018). Environmental selenium and human health: an update. Current Environmental Health Reports, 5(4), 464–485. https://doi.org/10.1007/s40572-018-0213-0

    Article  Google Scholar 

  • Wang, J., et al. (2016). Bioaccessibility, sources and health risk assessment of trace metals in urban park dust in Nanjing, Southeast China. Ecotoxicolgy and Environmental Safety, 128, 161–170. https://doi.org/10.1016/j.ecoenv.2016.02.020

    Article  CAS  Google Scholar 

  • Wenyou, H., Huang, B., He, Y., & Kalkhajeh, Y. K. (2016). Assessment of potential health risk of heavy metals in soils from a rapidly developing region of China. Human and Ecological Risk Assessment: An International Journal, 22(1), 211–225. https://doi.org/10.1080/10807039.2015.1057102

    Article  CAS  Google Scholar 

  • World Health Organization (WHO), Guidelines on Drinking-Water Quality, World Health Organization, Geneva, Switzerland, 3rd edition, 2004.

  • World Health Organization (WHO), Guidelines for Drinking-Water Quality, First Addendum to Geneva, World Health Organization, Geneva, Switzerland, 3rd edition, 2006

  • Xiao, X. (2019). Distribution and health risk assessment of potentially toxic elements in soils around coal industrial areas: A global meta-analysis. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.135292

    Article  Google Scholar 

  • Yang, Q. (2017). Morphological distribution characteristics and pollution evaluation of havy metals in the soils of Ganzhou city. Nonferrous Metal Science and Engineer, 8, 118–124.

    CAS  Google Scholar 

  • Yang, Q., Li, Z., Xiaoning, L., Duan, Q., Huang, L., & Bi, J. (2018). A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of The Total Environment, 642, 690–700. https://doi.org/10.1016/j.scitotenv.2018.06.068

    Article  CAS  Google Scholar 

  • Zhang, C., Yang, Y., Li, W., Zhang, C., Zhang, R., Mei, Y., Liao, X., & Liu, Y. (2015). Spatial distribution and ecological risk assessment of trace metals in urban soils in Wuhan, central China. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-015-4762-5

    Article  Google Scholar 

  • Zhang, K., Zheng, X., Li, H., & Zhao, Z. (2020). Human health risk assessment and early warning of heavy metal pollution in soil of a coal chemical plant in northwest China. Soil and Sediment Contamination: An International Journal, 29(5), 481–502. https://doi.org/10.1080/15320383.2020.1746737

    Article  CAS  Google Scholar 

  • Zhang, X., Zha, T., Guo, X., Meng, G., & Zhou, J. (2018). Spatial distribution of metal pollution of soils of Chinese provincial capital cities. Science of The Total Environment, 643, 1502–1513. https://doi.org/10.1016/j.scitotenv.2018.06.177

    Article  CAS  Google Scholar 

  • Zhao, S., Duan, Y., Lu, J., Gupta, R., Pudasainee, D., Liu, S., & Lu, J. (2018). Chemical speciation and leaching characteristics of hazardous trace elements in coal and fly ash from coal-fired power plants. Fuel, 232, 463–469.

    Article  CAS  Google Scholar 

  • Zhihao, W., Yumei, D., Xue, H., Yongsheng, W., & Zhou, B. (2012). Aluminum induces neurodegeneration and its toxicity arises from increased iron accumulation and reactive oxygen species (ROS) production. Neurobiology of Aging, 33(1), 199.e1-199.e12. https://doi.org/10.1016/j.neurobiolaging.2010.06.018

    Article  CAS  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, the Institutional Program for Internationalization (CAPES-PrInt) and Conselho Nacional de Desenvolvimento Científico e Tecnológico—310856/2020–5.

Author information

Authors and Affiliations

Authors

Contributions

The study is part of Paula Ramires’ Doctoral Thesis. All authors read and approved the final version of the article. PFR was responsible for collecting and interpreting the data, preparing the maps and writing the text. MS and MLF were responsible for reviewing the data, analyzing and interpreting the data. DA was responsible for reviewing the equations, calculations and values used in the Risk Assessment model. SPM and CRA were responsible for correcting the text, discussing the results. FMRSJ was the study supervisor.

Corresponding author

Correspondence to Flávio Manoel Rodrigues da Silva Júnior.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Consent to participate

Not applicable.

Consent for publication

The manuscript is reviewed and approved by all authors.

Data availability

All relevant data and material are visible in the manuscript.

Code availability

Not applicable.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramires, P.F., dos Santos, M., Paz-Montelongo, S. et al. Multiple exposure pathways and health risk assessment of potentially harmful elements for children and adults living in a coal region in Brazil. Environ Geochem Health 45, 305–318 (2023). https://doi.org/10.1007/s10653-022-01234-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01234-8

Keywords

Navigation