Skip to main content

Advertisement

Log in

Shallow groundwater environmental investigation at northeastern Cairo, Egypt: quality and photo-treatment evaluation

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Groundwater represents the primary source of freshwater for more than 35% of world people, and its contamination became a worldwide challenge. Egypt is suffering from water quantity and quality, especially in desert areas. El Obour city and environs Northeast Cairo face waterlogging owing to the elevated-shallow groundwater table. In the present research work, the water quality of the shallow groundwater aquifer was studied. The remediation efficiency of polluted water using photocatalytic treatment technique in the presence of modified nano-titania and solar radiation has also been investigated. Twenty-eight representative samples have been collected from different locations, and their microbial, physical, and chemical characteristics were determined. The average contents of Pb (214.96 µg/L), As (1517 µg/L), Cd (8.79 µg/L), total bacterial count (2.22 × 105 CFU/ml), and bacterial indicators (MPN-index/100 ml): total coliform (497.4), fecal coliform (358.3), and fecal streptococci (115.9) were higher than WHO permissible limits for drinking water, possibly due to higher industrialization, agricultural, and urbanization rates. The organic pollutants reached critical concentrations (chemical oxygen demand up to 960.8 mg O2/L). Most of the studied samples contained acceptable concentrations of the major ions, (e.g., K+, Mg2+, HCO3), for drinking and irrigation purposes. The statistical analyses (e.g., principal component analysis and cluster analysis) pointed out the control of water–rock interaction and anthropogenic activities in water composition. The hydrochemical data show that most of the water samples (96.4%) are Na2SO4 and NaHCO3 type, indicating its meteoric origin. The contamination with human and animal fecal substances, NO3¯, and NH4+ was identified in all samples, which pointed out the control of anthropogenic activities in water pollution. The photocatalytic technique efficiently eliminated more than 82–95% of organic contents and microbial pollutants, respectively, but it was inefficient in reducing heavy metal levels. According to the current results, shallow groundwater injection into the deep aquifer must be constrained and reusable after treatment. Finally, more studies are imperative to disseminate the applied treatment techniques to elude bacteria and organic pollutants from water at a pilot scale.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data are provided in the article and the Supplementary Material.

Code availability

This research uses the following software: Microsoft Word (Office365), Microsoft Excel (Office 365), ArcGIS (v.10.4), Surfer, SPSS 21, XLSTAT (USA), FastStone (v.9.0), Sigma Plot, Edraw Max (v.10).

References

  • Aamer, H. A., Hassan, D. M., & Kotb, S. (2016). Assessment of heavy metals pollution in groundwater and cow’s milk in Upper Egypt. Assiut Veterinary Medical Journal, 62(149), 1–12

    Article  Google Scholar 

  • Abdelhafiz, M. A., Elnazer, A. A., Seleem, E.-M. M., Mostafa, A., Al-Gamal, A. G., Salman, S. A., et al. (2021). Chemical and bacterial quality monitoring of the Nile River water and associated health risks in Qena-Sohag sector, Egypt. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-021-00893-3.

    Article  Google Scholar 

  • Abdel-Shafy, H. I., & Kamel, A. H. (2016). Groundwater in Egypt issue: Resources, location, amount, contamination, protection, renewal, future overview. Egyptian Journal of Chemistry, 59(3), 321–362. https://doi.org/10.21608/ejchem.2016.1085

    Article  Google Scholar 

  • Abdel Latif, A., & El Kashouty, M. (2010). Groundwater investigation in Awlad Salameh, southern Sohag, Upper Egypt. Earth Sciences Research Journal, 14(1), 63–75

    CAS  Google Scholar 

  • Abdelbakey, S. (2014). Geo-Environmental assessment of El-Obour area, northeast Cairo, Egypt. Ph.D. Thesis, Ain Shams University, Faculty of science.

  • Abdelhafiz, M. A. (2017). Hydrochemical and environmental assessment of waterlogging and soil for different purposes at El Obour City, East Cairo, Egypt. MSc, Al-Azhar University, Faculty of Science, Assiut.

  • Adachi, K., & Tainosho, Y. (2004). Characterization of heavy metal particles embedded in tire dust. Environment International, 30(8), 1009–1017. https://doi.org/10.1016/j.envint.2004.04.004

    Article  CAS  Google Scholar 

  • Ahmed, M. F., Mokhtar, M. B., & Alam, L. (2021). Carcinogenic and non-carcinogenic health risk of arsenic ingestion via drinking water in Langat River Basin, Malaysia. Environmental Geochemistry and Health, 43(2), 897–914. https://doi.org/10.1007/s10653-020-00571-w

    Article  CAS  Google Scholar 

  • Ajami, H. (2021). Geohydrology: Groundwater. In D. Alderton & S. A. Elias (Eds.), Encyclopedia of geology. (2nd ed., pp. 408–415). Academic Press.

  • APHA. (1998). Standard methods for the examination of water and wastewater: 19th edition supplement. American Public Health Association.

  • APHA. (2012). Standard methods for the examination of water and wastewater (22.th ed.). Washington, DC: American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF).

    Google Scholar 

  • Awad, M., Nada, A. A., Hamza, M. S., & Froehlich, K. (1995). Chemical and isotopic investigation of groundwater in Tahta region, Sohag-Egypt. Environmental Geochemistry and Health, 17(3), 147–153. https://doi.org/10.1007/BF00126083

    Article  CAS  Google Scholar 

  • Awad, S., El Fakharany, M. A., & Hagran, N. M. (2015). Environmental impact on water resources at the Northwestern Part of the Nile Delta, Egypt. The Journal of American Science, 11(11), 1–11. https://doi.org/10.7537/marsjas111115.01

    Article  Google Scholar 

  • Bahrami, M., Zarei, A. R., & Rostami, F. (2020). Temporal and spatial assessment of groundwater contamination with nitrate by nitrate pollution index (NPI) and GIS (case study: Fasarud Plain, southern Iran). Environmental Geochemistry and Health, 42(10), 3119–3130. https://doi.org/10.1007/s10653-020-00546-x

    Article  CAS  Google Scholar 

  • Barseem, M., Lateef, T., & Deen, H. (2015a). Geoelectrical contribution for solving water logging in selected sites, kilometer 35, Cairo - Ismailia Desert Rode, Egypt. Egyptian Geophysical Society EGS Journal, 13(1), 67–82

    Google Scholar 

  • Barseem, M., Lateef, T., & Deen, H. (2015b). Geoelectrical contribution for solving water logging in selected sites, kilometer 35, Cairo - Ismailia Desert Rode, Egypt. Egyptian Geophysical Society EGS Journal, 13, 67–82

    Google Scholar 

  • Batzill, M., Morales, E. H., & Diebold, U. (2006). Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. Physical Review Letters, 96(2), 026103. https://doi.org/10.1103/PhysRevLett.96.026103

    Article  CAS  Google Scholar 

  • Boonkaewwan, S., Sonthiphand, P., & Chotpantarat, S. (2021). Mechanisms of arsenic contamination associated with hydrochemical characteristics in coastal alluvial aquifers using multivariate statistical technique and hydrogeochemical modeling: A case study in Rayong province, eastern Thailand. Environmental Geochemistry and Health, 43(1), 537–566. https://doi.org/10.1007/s10653-020-00728-7

    Article  CAS  Google Scholar 

  • Cabral, J. P. S. (2010). Water microbiology. Bacterial pathogens and water. International Journal of Environmental Research and Public Health, 7(10), 3657–3703

    Article  Google Scholar 

  • Chaney, R. L. (2010). Cadmium and zinc. In P. S. Hooda (Ed.), Trace elements in soils. (pp. 409–439). Wiley Online Library.

  • Chen, J., Qian, H., Gao, Y., & Li, X. (2018). Human health risk assessment of contaminants in drinking water based on triangular fuzzy numbers approach in Yinchuan City, Northwest China. Exposure and Health, 10, 155–166. https://doi.org/10.1007/s12403-017-0252-z

    Article  CAS  Google Scholar 

  • Chobba, B. M., Messaoud, M., Weththimuni, M. L., Bouaziz, J., Licchelli, M., De Leo, F., et al. (2019). Preparation and characterization of photocatalytic Gd-doped TiO2 nanoparticles for water treatment. Environmental Science and Pollution Research, 26(32), 32734–32745. https://doi.org/10.1007/s11356-019-04680-7

    Article  CAS  Google Scholar 

  • Crider, Y., Sultana, S., Unicomb, L., Davis, J., Luby, S. P., & Pickering, A. J. (2018). Can you taste it? Taste detection and acceptability thresholds for chlorine residual in drinking water in Dhaka, Bangladesh. Science of The Total Environment, 613–614, 840–846. https://doi.org/10.1016/j.scitotenv.2017.09.135

    Article  CAS  Google Scholar 

  • Darwish, W., Bieh, M., Abdel-Mottaleb, M., Bieh, H., Nada, A., Elnazer, H., et al. (2015). Spectrophotometric evaluation of photocatalytic activity of nanostructured N-TiO2 and N, F-TiO2 by oxidative degradation of phthalocyanine star polymer. Advances in Natural and Applied Sciences, 9(12), 105–115

    CAS  Google Scholar 

  • Das, S., Misra, A. J., Habeeb Rahman, A. P., Basu, A., Mishra, A., Tamhankar, A. J., et al. (2020). Designing novel photocatalysts for disinfection of multidrug-resistant waterborne bacteria. In L. Ledwani & J. S. Sangwai (Eds.), Nanotechnology for energy and environmental engineering. (pp. 441–476). Springer International Publishing.

  • Divya, A. H., & Solomon, P. A. (2016). Effects of some water quality parameters especially total coliform and fecal coliform in surface water of Chalakudy River. Procedia Technology, 24, 631–638. https://doi.org/10.1016/j.protcy.2016.05.151

    Article  Google Scholar 

  • El-Aassar, A. H. M., Abo-El-Fadl, M. M., & Shawky, H. A. (2010). Environmental impacts on groundwater quality in El-Obour city and its vicinities-east Cairo-Egypt. Egyptian Journal of Desert Research, 60(1), 31–50.

    Google Scholar 

  • El-Fakharany, M. A., Mansour, N. M., Yehia, M. M., & Monem, M. (2017). Evaluation of groundwater quality of the Quaternary aquifer through multivariate statistical techniques at the southeastern part of the Nile Delta, Egypt. Sustainable Water Resources Management, 3(1), 71–81. https://doi.org/10.1007/s40899-017-0087-6

    Article  Google Scholar 

  • El Nazer, H. E. D., Salman, S., & Elnazer, A. (2017). Irrigation water quality assessment and a new approach to its treatment using photocatalytic technique: Case study Yaakob village, SW Sohag, Egypt. Journal of Materials and Environmental Science, 8, 310–317

    CAS  Google Scholar 

  • Elnazer, A. A., Salman, S. A., Seleem, E. M., & Abu El Ella, E. M. (2015). Assessment of some heavy metals pollution and bioavailability in roadside soil of Alexandria-Marsa Matruh Highway, Egypt. International Journal of Ecology, 2015, 689420. https://doi.org/10.1155/2015/689420

    Article  Google Scholar 

  • Elnazer, A. A., Seleem, E.-M.M., Zeid, S. A. M., Ismail, I. S. A., Bahlol, H. A., & Salman, S. A. (2021). Hydrochemical evaluation of the quaternary aquifer and its suitability for different purposes at south Al Waqf city, Qena, Upper Egypt. Groundwater for Sustainable Development, 12, 100517. https://doi.org/10.1016/j.gsd.2020.100517

    Article  Google Scholar 

  • Gole, J. L., Stout, J. D., Burda, C., Lou, Y., & Chen, X. (2004). Highly Efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale. The Journal of Physical Chemistry B, 108(4), 1230–1240. https://doi.org/10.1021/jp030843n

    Article  CAS  Google Scholar 

  • He, X., Li, P., Wu, J., Wei, M., Ren, X., & Wang, D. (2021). Poor groundwater quality and high potential health risks in the Datong Basin, northern China: Research from published data. Environmental Geochemistry and Health, 43(2), 791–812. https://doi.org/10.1007/s10653-020-00520-7

    Article  CAS  Google Scholar 

  • Howard, K., & Gerber, R. (2018). Impacts of urban areas and urban growth on groundwater in the Great Lakes Basin of North America. Journal of Great Lakes Research, 44(1), 1–13. https://doi.org/10.1016/j.jglr.2017.11.012

    Article  CAS  Google Scholar 

  • Ikhlil, A. I. H. (2009). Groundwater quality of springs and dug wells in Dura Area. M.Sc., College of Graduate Studies and Academic Research, Hebron University, Palestine.

  • Jadhav, S. V., Bringas, E., Yadav, G. D., Rathod, V. K., Ortiz, I., & Marathe, K. V. (2015). Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal. Journal of Environmental Management, 162, 306–325. https://doi.org/10.1016/j.jenvman.2015.07.020

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. (1st ed.). Berlin: Springer.

    Book  Google Scholar 

  • Karunanidhi, D., Aravinthasamy, P., Subramani, T., & Muthusankar, G. (2021a). Revealing drinking water quality issues and possible health risks based on water quality index (WQI) method in the Shanmuganadhi River basin of South India. Environmental Geochemistry and Health, 43(2), 931–948. https://doi.org/10.1007/s10653-020-00613-3

    Article  CAS  Google Scholar 

  • Karunanidhi, D., Subramani, T., Roy, P. D., & Li, H. (2021b). Impact of groundwater contamination on human health. Environmental Geochemistry and Health, 43(2), 643–647. https://doi.org/10.1007/s10653-021-00824-2

    Article  CAS  Google Scholar 

  • Krishan, G. (2019). Groundwater salinity . Current World Environment, 14, 186–188. https://doi.org/10.12944/CWE.14.2.02

    Article  Google Scholar 

  • Kubier, A., Wilkin, R. T., & Pichler, T. (2019). Cadmium in soils and groundwater: A review. Applied Geochemistry, 108, 104388. https://doi.org/10.1016/j.apgeochem.2019.104388

    Article  CAS  Google Scholar 

  • Li, B., Xia, M., Zorec, R., Parpura, V., & Verkhratsky, A. (2021). Astrocytes in heavy metal neurotoxicity and neurodegeneration. Brain Research, 1752, 147234. https://doi.org/10.1016/j.brainres.2020.147234

    Article  CAS  Google Scholar 

  • Li, P., & Wu, J. (2019). Drinking water quality and public health. Exposure and Health, 11(2), 73–79. https://doi.org/10.1007/s12403-019-00299-8

    Article  Google Scholar 

  • Linsebigler, A. L., Lu, G., & Yates, J. T. (1995). Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chemical Reviews, 95(3), 735–758. https://doi.org/10.1021/cr00035a013

    Article  CAS  Google Scholar 

  • Liu, J., Platts-Mills, J. A., Juma, J., Kabir, F., Nkeze, J., Okoi, C., et al. (2016). Use of quantitative molecular diagnostic methods to identify causes of diarrhoea in children: A reanalysis of the GEMS case-control study. Lancet (London, England), 388(10051), 1291–1301. https://doi.org/10.1016/S0140-6736(16)31529-X

    Article  CAS  Google Scholar 

  • Machiwal, D., Jha, M. K., Singh, V. P., & Mohan, C. (2018). Assessment and mapping of groundwater vulnerability to pollution: Current status and challenges. Earth-Science Reviews, 185, 901–927. https://doi.org/10.1016/j.earscirev.2018.08.009

    Article  Google Scholar 

  • Mandour, R. A., & Azab, Y. A. (2011). Toxic levels of some heavy metals in drinking groundwater in Dakahlyia Governorate, Egypt in the year 2010. International Journal of Occupational and Environmental Medicine, 2(2), 112–117

    CAS  Google Scholar 

  • Mansour, N. M. (2020). Hydrochemical studies and evaluation of groundwater quality of the Quaternary aquifer at Faquss, Al Sharqiya Governorate, Egypt. Sustainable Water Resources Management, 6(2), 19. https://doi.org/10.1007/s40899-020-00374-y

    Article  Google Scholar 

  • Masoud, A. A., Abdel-Wahab Arafa, N. A., & El-Bouraie, M. (2018). Patterns and trends of the pesticide pollution of the Shallow Nile Delta Aquifer (Egypt). Water, Air, & Soil Pollution, 229(5), 148. https://doi.org/10.1007/s11270-018-3802-5

    Article  CAS  Google Scholar 

  • Melegy, A. A., Shaban, A. M., Hassaan, M. M., & Salman, S. A. (2014). Geochemical mobilization of some heavy metals in water resources and their impact on human health in Sohag Governorate, Egypt. Arabian Journal of Geosciences, 7(11), 4541–4552. https://doi.org/10.1007/s12517-013-1095-y

    Article  CAS  Google Scholar 

  • Mishra, S., Dwivedi, S., & Singh, R. (2010). A review on epigenetic effect of heavy metal carcinogens on human health. The Open Nutraceuticals Journal, 3, 188–193

    CAS  Google Scholar 

  • Mthembu, P. P., Elumalai, V., Brindha, K., & Li, P. (2020). Hydrogeochemical processes and trace metal contamination in groundwater: Impact on human health in the Maputaland Coastal Aquifer, South Africa. Exposure and Health, 12(3), 403–426. https://doi.org/10.1007/s12403-020-00369-2

    Article  CAS  Google Scholar 

  • Murray, C. J. L., Vos, T., Lozano, R., Naghavi, M., Flaxman, A. D., Michaud, C., et al. (2012). Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. The Lancet, 380(9859), 2197–2223. https://doi.org/10.1016/S0140-6736(12)61689-4

    Article  Google Scholar 

  • Mwabi, J. K., Mamba, B. B., & Momba, M. (2013). Removal of waterborne bacteria from surface water and groundwater by cost-effective household water treatment systems (HWTS): A sustainable solution for improving water quality in rural communities of Africa. Water SA, 39(4), 445–456

    Google Scholar 

  • MWRI. (2014). Water scarcity in Egypt: The urgent need for regional cooperation among the Nile Basin Countries. Ministry of Water Resources and Irrigation.

  • Nadeem-ul-Haq, A., & M. A., Haque, Z., Badar, N., & Mughal, N. . (2009). Drinking water contamination by chromium and lead in industrial lands of Karachi. Journal of Pakistan Medical Association, 59(5), 270–274

    CAS  Google Scholar 

  • Nakadaira, H., Nakamura, K., Mutoh, K., Yamamoto, M., & Katoh, K. (2000). Arsenic residues in well water 36 y after endemic arsenic poisoning. Archives of Environmental Health: An International Journal, 55(5), 364–364. https://doi.org/10.1080/00039890009604031

    Article  CAS  Google Scholar 

  • Nan, Z., Xu, W., & Zhao, C. (2006). Spatial distribution of selected trace metals in urban soils of Lanzhou City, Gansu Province, Northwestern of China. In 2006 IEEE international symposium on geoscience and remote sensing, July 31–August 4 2006 2006 (pp. 3397–3400). doi:https://doi.org/10.1109/IGARSS.2006.872.

  • Norrman, J., Sparrenbom, C. J., Berg, M., Dang, D. N., Jacks, G., Harms-Ringdahl, P., et al. (2015). Tracing sources of ammonium in reducing groundwater in a well field in Hanoi (Vietnam) by means of stable nitrogen isotope (δ15N) values. Applied Geochemistry, 61, 248–258. https://doi.org/10.1016/j.apgeochem.2015.06.009

    Article  CAS  Google Scholar 

  • Omar, M. E. D. M., & Moussa, A. M. A. (2016). Water management in Egypt for facing the future challenges. Journal of Advanced Research, 7(3), 403–412. https://doi.org/10.1016/j.jare.2016.02.005

    Article  Google Scholar 

  • Osman, G. A., Shaban, A. M., Melegy, A. A., Hassaan, M. M., & Salman, S. A. (2012). A baseline study on microbial and inorganic chemicals contaminants of health importance in groundwater and surface water of Sohag Governorate, Egypt. Journal of Applied Sciences Research, 8, 5765–5773

    CAS  Google Scholar 

  • Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., et al. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 125, 331–349. https://doi.org/10.1016/j.apcatb.2012.05.036

    Article  CAS  Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water analyses. EOS, Transactions American Geophysical Union, 25(6), 914–928. https://doi.org/10.1029/TR025i006p00914

    Article  Google Scholar 

  • Raghunath, H. M. (1987). Groundwater. Wiley Eastern Ltd.

  • Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. (Vol. 78)US Dept. Agri., USDA.

  • Sadek, M., Ali-Bik, M. W., & Hassan, S. M. (2015). Late Neoproterozoic basement rocks of Kadabora-Suwayqat area, Central Eastern Desert, Egypt: geochemical and remote sensing characterization. Arabian Journal of Geosciences, 8, 10459–10479. https://doi.org/10.1007/s12517-015-1973-6

    Article  CAS  Google Scholar 

  • Salem, H. M., Eweida, E. A., & Farag, A. (2000). Heavy metals in drinking water and their environmental impact on human health. Paper presented at the ICEHM international conference for environmental hazards mitigation.

  • Salman, S. A., Arauzo, M., & Elnazer, A. A. (2019a). Groundwater quality and vulnerability assessment in west Luxor Governorate, Egypt. Groundwater for Sustainable Development, 8, 271–280. https://doi.org/10.1016/j.gsd.2018.11.009

    Article  Google Scholar 

  • Salman, S. A., Asmoay, A., El-Gohary, A., & Sabet, H. (2019b). Evaluation of human risks of surface water and groundwater contaminated with Cd and Pb in the southern El-Minya Governorate, Egypt. Drinking Water Engineering and Science, 12, 23–30. https://doi.org/10.5194/dwes-12-23-2019

    Article  CAS  Google Scholar 

  • Salman, S. A., & Elnazer, A. A. (2015). Evaluation of groundwater quality and its suitability for drinking and agricultural uses in SW Qena Governorate, Egypt. Advances in Natural and Applied Sciences, 9, 16+

    CAS  Google Scholar 

  • Salman, S. A., & Elnazer, A. A. (2020). Assessment and speciation of chromium in groundwater of south Sohag Governorate, Egypt. Groundwater for Sustainable Development, 10, 100369. https://doi.org/10.1016/j.gsd.2020.100369

    Article  Google Scholar 

  • Salman, S. A., Zeid, S. A. M., Seleem, E. M., & Abdel-Hafiz, M. A. (2019c). Soil characterization and heavy metal pollution assessment in Orabi farms, El Obour, Egypt. Bulletin of the National Research Centre, 43(1), 42. https://doi.org/10.1186/s42269-019-0082-1

    Article  Google Scholar 

  • Shaji, E., Santosh, M., Sarath, K. V., Prakash, P., Deepchand, V., & Divya, B. V. (2020). Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula. Geoscience Frontiers. https://doi.org/10.1016/j.gsf.2020.08.015

    Article  Google Scholar 

  • Smithers, J., Gray, R., Johnson, S., & Still, D. (2017). Modelling and water yield assessment of Lake Sibhayi. Water SA, 43, 480–491

    Article  Google Scholar 

  • Stachler, E., Kelty, C., Sivaganesan, M., Li, X., Bibby, K., & Shanks, O. C. (2017). Quantitative CrAssphage PCR assays for human fecal pollution measurement. Environmental Science & Technology, 51(16), 9146–9154. https://doi.org/10.1021/acs.est.7b02703

    Article  CAS  Google Scholar 

  • Sulin, V. (1946). Waters of petroleum formations in the system of natural water. (pp. 35–96). Gostoptekhiz-dat.

  • Taha, A. A., El-Mahmoudi, A. S., & El-Haddad, I. M. (2004). Pollution sources and related environmental impacts in the new communities southeast Nile Delta, Egypt. Emirates Journal for Engineering Research, 9(1), 35–49

    Google Scholar 

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Experientia supplementum, 2012(101), 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  Google Scholar 

  • Trick, J. K., Stuart, M., & Reeder, S. (2018). Contaminated groundwater sampling and quality control of water analyses. In B. De Vivo, H. E. Belkin, & A. Lima (Eds.), Environmental geochemistry. (2d ed., pp. 25–45). Amsterdam: Elsevier.

    Google Scholar 

  • Ukah, B. U., Egbueri, J. C., Unigwe, C. O., & Ubido, O. E. (2019). Extent of heavy metals pollution and health risk assessment of groundwater in a densely populated industrial area, Lagos, Nigeria. International Journal of Energy and Water Resources, 3(4), 291–303. https://doi.org/10.1007/s42108-019-00039-3

    Article  Google Scholar 

  • UNESCO. (2009). Water in a changing world (WWDR-3): The 3rd United Nations World Water Development Report.

  • USDA. (2011). Assessing water quality for human consumption, agriculture, and aquatic life uses tom pick. United States Department of Agriculture, National Agricultural Statistics Service.

  • Usman, U. A., Yusoff, I., Raoov, M., & Hodgkinson, J. (2020). Trace metals geochemistry for health assessment coupled with adsorption remediation method for the groundwater of Lorong Serai 4, Hulu Langat, west coast of Peninsular Malaysia. Environmental Geochemistry and Health, 42(10), 3079–3099. https://doi.org/10.1007/s10653-020-00543-0

    Article  CAS  Google Scholar 

  • Vasudevan, U., Gantayat, R. R., Chidambaram, S., Prasanna, M. V., Venkatramanan, S., Devaraj, N., et al. (2021). Microbial contamination and its associations with major ions in shallow groundwater along coastal Tamil Nadu. Environmental Geochemistry and Health, 43(2), 1069–1088. https://doi.org/10.1007/s10653-020-00712-1

    Article  CAS  Google Scholar 

  • Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244. https://doi.org/10.1080/01621459.1963.10500845

    Article  Google Scholar 

  • Wen, D., Zhang, F., Zhang, E., Wang, C., Han, S., & Zheng, Y. (2013). Arsenic, fluoride and iodine in groundwater of China. Journal of Geochemical Exploration, 135, 1–21. https://doi.org/10.1016/j.gexplo.2013.10.012

    Article  CAS  Google Scholar 

  • WHO. (2003). Guidelines for safe recreational water environments. Volume 1, coastal and fresh waters. World Health Organization.

  • WHO. (2011). Guidelines for drinking-water quality (4th edn, Vol. 4). World Health Organization.

  • WHO. (2017a). Guidelines for drinking-water quality. (4th ed.). World Health Organization.

  • WHO. (2017b). UN-water global analysis and assessment of sanitation and drinking-water (GLAAS) report. Financing universal water, sanitation and hygiene under the Sustainable. (pp. 96).

  • WHO. (2019). Drinking-water fact sheets. Retrieved from World Health Organization. https://www.who.int/en/news-room/fact-sheets/detail/drinking-water.

  • Xiong, B., Li, R., Johnson, D., Luo, Y., Xi, Y., Ren, D., et al. (2021). Spatial distribution, risk assessment, and source identification of heavy metals in water from the Xiangxi River, Three Gorges Reservoir Region, China. Environmental Geochemistry and Health, 43(2), 915–930. https://doi.org/10.1007/s10653-020-00614-2

    Article  CAS  Google Scholar 

  • You, X., Liu, S., Dai, C., Guo, Y., Zhong, G., & Duan, Y. (2020). Contaminant occurrence and migration between high- and low-permeability zones in groundwater systems: A review. Science of The Total Environment, 743, 140703. https://doi.org/10.1016/j.scitotenv.2020.140703

    Article  CAS  Google Scholar 

  • Zeid, S., Seleem, E., Salman, S., & Abdel-Hafiz, M. (2018). Water quality index of shallow groundwater and assessment for different usages in El-Obour city, Egypt. Journal of Materials and Environmental Science, 9(7), 1957–1968

    Google Scholar 

  • Zhang, Y., Wu, J., & Xu, B. (2018a). Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environmental Earth Sciences, 77(7), 273. https://doi.org/10.1007/s12665-018-7456-9

    Article  CAS  Google Scholar 

  • Zhang, J., Balkovič, J., Azevedo, L. B., Skalský, R., Bouwman, A. F., Xu, G., et al. (2018b). Analyzing and modelling the effect of long-term fertilizer management on crop yield and soil organic carbon in China. Science of The Total Environment, 627, 361–372. https://doi.org/10.1016/j.scitotenv.2018.01.090

    Article  CAS  Google Scholar 

  • Zhang, X., Zhi, X., Chen, L., & Shen, Z. (2020). Spatiotemporal variability and key influencing factors of river fecal coliform within a typical complex watershed. Water Research, 178, 115835. https://doi.org/10.1016/j.watres.2020.115835

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the CAS-TWAS president doctoral fellowship program. The authors are grateful to the editor and anonymous reviewers for their suggestions and comments which enhanced the paper's quality.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed significantly toward the final makeup of the paper. MAA and SAS contributed to conceptualization, investigation, formal analysis, visualization, data curation, writing—review and editing, and validation; EMS contributed to conceptualization, data collection, visualization and validation; HAEN contributed to formal analysis, investigation, writing and editing; SAMZ conceived the idea of the study, conceptualization and validation; BM helped in supervision, conceptualization, review—revision and editing, discussed the results, and provided valuable feedbacks after proofreading. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to El-Montser M. Seleem or Bo Meng.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Consent to participate

No human participants were involved in this study.

Consent to publish

No human participants were involved in this study.

Ethics approval

Not applicable.

Ethical approval for animal research

This article does not contain any studies on animals performed by any authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1787 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelhafiz, M.A., Seleem, EM.M., El Nazer, H.A. et al. Shallow groundwater environmental investigation at northeastern Cairo, Egypt: quality and photo-treatment evaluation. Environ Geochem Health 43, 4533–4551 (2021). https://doi.org/10.1007/s10653-021-00933-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00933-y

Keywords

Navigation