Skip to main content

Advertisement

Log in

Comprehensive characterization of PAHs profile in Serbian soils for conventional and organic production: potential sources and risk assessment

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

This study presents a comprehensive characterization of occurrence and levels of 16 polycyclic aromatic hydrocarbons (PAHs) in arable soils used for conventional and organic production in northern and central part of Serbia as well as cross-border region with Hungary. Furthermore, this study includes a characterization of PAH sources and carcinogenic/non-carcinogenic human health risk for PAHs accumulated in analysed arable soils. The total concentration of 16 PAHs varied between 55 and 4584 µg kg−1 in agricultural soil used for conventional production and between 90 and 523 µg kg−1 in agricultural soil used for organic production. High molecular weight (HMW) PAHs were dominant compounds with similar contribution in both soil types (86% and 80% in conventional and in organic soil, respectively). Principal component analysis and diagnostic ratios of selected PAHs were used for identification of PAH sources in the analysed soils. Additionally, positive matrix factorization was applied for quantitative assessment. The results indicated that the major sources of PAHs were vehicle emissions, biomass and wood combustion, accounting for ~ 93% of PAHs. Exposure of farmers assessed through carcinogenic (TCR) and non-carcinogenic (THQ) risk did not exceed the acceptable threshold (TCR < 10–6 and THQ < 1). Oral ingestion was the main exposure route which accounted for 57% of TCR and 80% of THQ. It was followed by dermal contact. This investigation gives a valuable data insight into the PAHs presence in arable soils and reveals the absence of environmental and health risk. It also acknowledges the importance of comprehensive monitoring of these persistent pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  • Abdel-Shafy, H. I., & Mansou, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25, 107–123.

    Article  Google Scholar 

  • Agarwal, T., Khillare, P. S., Shridhar, V., & Ray, S. (2009). Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India. Journal of Hazardous Materials, 163, 1033–1039.

    Article  CAS  Google Scholar 

  • Ahangar, A. G. (2010). Sorption of PAHs in the soil environment with emphasis on the role of soil organic matter: A review. World Applied Sciences Journal, 11, 759–765.

    Google Scholar 

  • Bing, Y., Zhou, L., Xue, N., Li, F., Li, Y., Vogt, R. D., et al. (2013). Source apportionment of polycyclic aromatic hydrocarbons in soils of Huanghuai Plain, China: comparison of three receptor models. Science of the Total Environment, 443(3), 31–39.

    Google Scholar 

  • Bucheli, T. D., Blum, F., Desaules, A., & Gustafsson, O. (2004). Polycyclic aromatic hydrocarbons, black carbon, and molecular markers in soils of Switzerland. Chemosphere, 56, 1061–1076.

    Article  CAS  Google Scholar 

  • Budzinski, H., Jones, I., Bellocq, J., Pierard, C., & Garrigues, P. H. (1997). Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry, 58(1–2), 85–97.

    Article  CAS  Google Scholar 

  • Cachada, A., Ferreira da Silva, E., Duarte, A. C., & Pereira, R. (2016). Risk assessment of urban soils contamination: The particular case of polycyclic aromatic hydrocarbons. Science of the Total Environment, 551–552, 271–284.

    Article  CAS  Google Scholar 

  • Cetin, B. (2016). Investigation of PAHs, PCBs and PCNs in soils around a heavily industrialized area in Kocaeli, Turkey: concentrations, distributions, sources and toxicological effects. Science of the Total Environment, 560–561, 160–169.

    Article  CAS  Google Scholar 

  • Chai, C., Cheng, Q., Wu, J., Zeng, L., Chen, Q., Zhu, X., Ma, D & Ge, W. (2017). Contamination, source identification, and risk assessment of polycyclic aromatic hydrocarbons in the soils of vegetable greenhouses in Shandong, China. Ecotoxicology and Environmental Safety, 142, 181–188.

    Article  CAS  Google Scholar 

  • Chen, Y., Zhang, J., Zhang, F., Li, F., & Zhou, M. (2018a). Polycyclic aromatic hydrocarbons in farmland soils around main reservoirs of Jilin Province, China: occurrence, sources and potential human health risk. Environmental Geochemistry and Health, 40, 791–802.

    Article  CAS  Google Scholar 

  • Chen, Y., Zhang, J., Zhang, F., Liu, X., & Zhou, M. (2018b). Contamination and health risk assessment of PAHs in farmland soils of the Yinma River Basin, China. Ecotoxicology and Environmental Safety, 156, 383–390.

    Article  CAS  Google Scholar 

  • Chiang, K. C., Chio, C. P., Chiang, Y. H., & Liao, C. M. (2009). Assessing hazardous risks of human exposure to temple airborne polycyclic aromatic hydrocarbons. Journal of Hazardous Materials, 166(2), 676–685.

    Article  CAS  Google Scholar 

  • Ciarkowska, K., Gambus, F., Antonkiewicz, J., & Koliopoulos, T. (2019). Polycyclic aromatic hydrocarbon and heavy metal contents in the urban soils in southern Poland. Chemosphere, 229, 214–226.

    Article  CAS  Google Scholar 

  • Dickhut, R., Canuel, E., & Gustafson, K. (2000). Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay region. Environmental Science and Technology, 34, 4635–4640.

    Article  CAS  Google Scholar 

  • Directive on systematic soil quality control program, indicators for soil degradation risk assessment and methodology for remediation programs, 88/2010.

  • Duan, Y., Shen, G., Tao, S., Hong, J., Chen, Y., Xue, M., Li, T., Su, S., Shen, H., Fu, X., Meng, Q., Zhang, J., Zhang, B., Han, X ., & Song, K. (2015). Characteristics of polycyclic aromatic hydrocarbons in agricultural soils at a typical coke production base in Shanxi, China. Chemosphere, 127, 64–69.

    Article  CAS  Google Scholar 

  • Duval, M.M., & Friedlander, S.K. (2004). Source Resolution of Polycyclic Aromatic Hydrocarbons in Los Angeles Atmosphere: Application of a CMB with First Order Decay. Report EPA-600/2–81–161. US EPA, Washington, DC.

  • Gaga, E. O., & Arı, A. (2019). Gas-particle partitioning and health risk estimation of polycyclic aromatic hydrocarbons (PAHs) at urban, suburban and tunnel atmospheres: Use of measured EC and OC in model calculations. Atmospheric Pollution Research, 10, 1–11.

    Article  CAS  Google Scholar 

  • Gan, S., Lau, E. V., & Ng, H. K. (2009). Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Journal of Hazardous Materials, 172, 532–549.

    Article  CAS  Google Scholar 

  • Gao, P., da Silva, E. B., Townsend, T., Liu, X., & Ma, L. Q. (2019). Emerging PAHs in urban soils: Concentrations, bioaccessibility, and spatial distribution. Science of the Total Environment, 670, 800–805.

    Article  CAS  Google Scholar 

  • Han, B., Zheng, L., & Lin, F. (2019). Risk assessment and source apportionment of PAHs in surface sediments from Caofeidian Long Island, China. Marine Pollution Bulletin, 145, 42–46.

    Article  CAS  Google Scholar 

  • Hazarika, N., Dasa, A., Kamal, V., Anwar, K., Srivastava, A., & Jaina, V. K. (2019). Particle phase PAHs in the atmosphere of Delhi-NCR: With spatial distribution, source characterization and risk approximation. Atmospheric Environment, 200, 329–342.

    Article  CAS  Google Scholar 

  • Hussain, K., & Hoque, R. R. (2015). Seasonal attributes of urban soil PAHs of the Brahmaputra Valley. Chemosphere, 119, 794–802.

    Article  CAS  Google Scholar 

  • Hvězdová, M., Kosubová, P., Košíková, M., Scherr, K. E., Šimek, Z., & Brodský, L. (2018). Currently and recently used pesticides in Central European arable soils. Science of the Total Environment, 613–614, 361–370.

    Article  CAS  Google Scholar 

  • Kamens, R. M., Guo, Z., Fulcher, J. N., & Bell, D. A. (1988). Influence of humidity, sunlight, and temperature on the daytime decay of polyaromatic hydrocarbons on atmospheric soot particles. Environmental Science and Technology, 22, 103–108.

    Article  CAS  Google Scholar 

  • Kannan, K., Johnson-Restrepo, B., Yohn, S. S., Giesy, J. P., & Long, D. T. (2005). Spatial and temporal distribution of polycyclic aromatic hydrocarbons in sediments from Michigan inland lakes. Environmental Science and Technology, 39(13), 4700–4706.

    Article  CAS  Google Scholar 

  • Kastori, R., Maksimović, I., & Putnik Delić, M. (2012). Environmental aspects of burning field residues for use as an alternative fuel. Ratarstvo i povrtarstvo - Journal on Field and Vegetable Crops Research, 49(3), 313–319.

    Article  Google Scholar 

  • Khalili, N. R., Scheff, P. A., & Holsen, T. M. (1995). PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment, 29, 533–542.

    Article  CAS  Google Scholar 

  • Klimkowicz-Pawlas, A., Maliszewska-Kordyback, B., & Smreczak, B. (2019). Triad-based screening risk assessment of the agricultural area exposed to the long-term PAHs contamination. Environmental Geochemistry and Health, 41(3), 1369–1385.

    Article  CAS  Google Scholar 

  • Kuśmierz, M., Oleszczuk, P., Kraska, P., Pałys, E., & Andruszczak, S. (2016). Persistence of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil. Chemosphere, 146, 272–279.

    Article  CAS  Google Scholar 

  • Larsen, R. K., & Baker, J. E. (2003). Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environmental Science and Technology, 37, 1873–1881.

    Article  CAS  Google Scholar 

  • Lee, B. K., & Dong, T. T. (2010). Effects of road characteristics on distribution and toxicity of polycyclic aromatic hydrocarbons in urban road dust of Ulsan. Korea. Journal of Hazardous Materials, 175(1), 540–550.

    Article  CAS  Google Scholar 

  • Li, J., Zheng, Y., & Luo, X. (2016). PAH contamination in Beijing’s topsoil: a unique indicator of the megacity’s evolving energy consumption and overall environmental quality. Scientific Reports, 6, 33245.

    Article  CAS  Google Scholar 

  • Liao, C. M., & Chiang, K. C. (2006). Probabilistic risk assessment for personal exposure to carcinogenic polycyclic aromatic hydrocarbons in Taiwanese temples. Chemosphere, 63(9), 1610–1619.

    Article  CAS  Google Scholar 

  • Liu, G., Niu, J., Guo, W., An, X., & Zhao, L. (2016). Ecological and health risk-based characterization of agricultural soils contaminated with polycyclic aromatic hydrocarbons in the vicinity of a chemical plant in China. Chemosphere, 163, 461–470.

    Article  CAS  Google Scholar 

  • Liu, H., Yu, X., Liu, Z., & Sun, Y. (2018). Occurrence, characteristics and sources of polycyclic aromatic hydrocarbons in arable soils of Beijing, China. Ecotoxicology and Environmental Safety, 159, 120–126.

    Article  CAS  Google Scholar 

  • Liu, Y., Gao, P., Su, J., da Silva, E. B., de Oliveira, L. M., Townsend.,Xiang, P., & Ma, L.Q. (2019). PAHs in urban soils of two Florida cities: Background concentrations, distribution, and sources. Chemosphere, 214, 220–227.

    Article  CAS  Google Scholar 

  • Ma, W. L., Zhu, F. J., Liu, L. Y., Jia, H. L., Yang, M., & Li, Y. F. (2019). PAHs in Chinese atmosphere: Gas/particle partitioning. Science of the Total Environment, 693, 133623.

    Article  CAS  Google Scholar 

  • Mahdi Ahmeda, M., Doumenq, P., Osman Awaleh, M., Dhamar Syakti, A., Asia, L., & Chiron, S. (2017). Levels and sources of heavy metals and PAHs in sediment of Djibouti-city (Republic of Djibouti). Marine Pollution Bulletin, 120, 340–346.

    Article  CAS  Google Scholar 

  • Maliszewska-Kordybach, B. (1996). Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination. Applied Geochemistry, 11, 121–127.

    Article  Google Scholar 

  • Maliszewska-Kordybach, B., Klimkowicz-Pawlas, A., Smreczak, B., & Janusauskaite, D. (2007). Ecotoxicological effect of phenanthrene on nitrifying bacteria in soils of different properties. Journal of Environmental Quality, 36, 1635–1645.

    Article  CAS  Google Scholar 

  • Maliszewska-Kordybach, B., Smreczak, B., & Klimkowicz-Pawlas, A. (2009). Concentrations, sources, and spatial distribution of individual polycyclic aromatic hydrocarbons (PAHs) in agricultural soils in the Eastern part of the EU: Poland as a case study. Science of the Total Environment, 407, 3746–3753.

    Article  CAS  Google Scholar 

  • Maliszewska-Kordybach, B., Smreczak, B., Klimkowicz-Pawlas, A., & Terelak, H. (2008). Monitoring of the total content of polycyclic aromatic hydrocarbons (PAHs) in arable soils in Poland. Chemosphere, 73, 1284–1291.

    Article  CAS  Google Scholar 

  • Man, Y. B., Kang, Y., Wang, H. S., Lau, W., Li, H., Sun, X. L., Giesy,J.P., Chow, K .L ., & Wong,M.H. (2013). Cancer risk assessments of Hong Kong soils contaminated by polycyclic aromatic hydrocarbons. Journal of Hazardous Materials, 261, 770–776.

  • Masclet, P., Mouvier, G., & Nikolaou, K. (1986). Relative decay index and sources of polycyclic aromatic hydrocarbons. Atmospheric Environment, 20, 439–446.

    Article  CAS  Google Scholar 

  • Moreno-Jimenez, E., Garcia-Gomez, C., Oropesa, A. L., Este-ban, E., Haro, A., & Carpena-Ruiz, R., Tarazona,J.V., Peñalosa,J.M., Fernández,M.D. (2011). Screening risk assessment tools for assessing the environ-mental impact in an abandoned pyritic mine in Spain. Science of the Total Environment, 409, 692–703.

    Article  CAS  Google Scholar 

  • Nadal, M., Schuhmacher, M., & Domingo, J. L. (2007). Levels of metals, PCBs, PCNs and PAHs in soils of a highly industrialized chemical/petrochemical area: Temporal trend. Chemosphere, 66, 267–276.

    Article  CAS  Google Scholar 

  • Nam, J. J., Thomas, G. O., Jaward, F. M., Steinnes, E., Gustafsson, O., & Jones, K. C. (2008). PAHs in background soils from Western Europe: influence of atmospheric deposition and soil organic matter. Chemosphere, 70, 1596–1602.

    Article  CAS  Google Scholar 

  • Nisbet, C., & LaGoy, P. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16, 290–300.

    Article  CAS  Google Scholar 

  • Polycyclic aromatic hydrocarbons. Canadian soil quality guidelines for protection of environmental and human health. Canadian soil quality guidelines

  • Pufulete, M., Battershill, J., Boobis, A., & Fielder, R. (2004). Approaches to carcinogenic risk assessment for polycyclic aromatic hydrocarbons: a UK perspective. Regulatory Toxicology and Pharmacology, 40, 54–66.

    Article  CAS  Google Scholar 

  • Qiu, Y. Y., Gong, Y. X., & Ni, H. G. (2019). Contribution of soil erosion to PAHs in surface water in China. Science of the Total Environment, 686, 497–504.

    Article  CAS  Google Scholar 

  • Rajpara, R. K., Dudhagara, D. R., Bhatt, J. K., Gosai, H. B., & Dave, B. P. (2017). Polycyclic aromatic hydrocarbons (PAHs) at the Gulf of Kutch, Gujarat, India: occurrence, source apportionment, and toxicity of PAHs as an emerging issue. Marine Pollution Bulletin, 119(2), 231–238.

    Article  CAS  Google Scholar 

  • Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmospheric Environment, 42, 2895–2921.

    Article  CAS  Google Scholar 

  • Shen, G., Xue, M., Wei, S., Chen, Y., Zhao, Q., & Li, B., Wu,H., Tao,S.(2013). Influence of fuel moisture, charge size, feeding rate and air ventilation conditions on the emissions of PM, OC, EC, parent PAHs, and their derivatives from residential wood combustion. Journal of Environmental Sciences (China), 25(9), 1808–1816.

    Article  CAS  Google Scholar 

  • Simcik, M. F., Eisenreich, S. J., & Lioy, P. J. (1999). Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmospheric Environment, 33, 5071–5079.

    Article  CAS  Google Scholar 

  • Škrbić, B., Cvejanov, J., & Đurišić-Mladenović, N. (2005). Polycyclic aromatic hydrocarbons in surface soils of Novi Sad and bank sediment of the Danube River. Journal of Environmental Science and Health Part A: Toxic Hazardous Substances and Environmental Engineering, 40, 29–42.

    Article  CAS  Google Scholar 

  • Škrbić, B., Đurišić-Mladenović, N., Tadić, Đ, & Cvejanov, J. (2017). Polycyclic aromatic hydrocarbons in urban soil of Novi Sad, Serbia: occurrence and cancer risk assessment. Environmental Science and Pollution Research, 24, 16148–16159.

    Article  CAS  Google Scholar 

  • Škrbić, B., Đurišić-Mladenović, N., Živančev, J., & Tadić, Đ. (2019). Seasonal occurrence and cancer risk assessment of polycyclic aromatic hydrocarbons in street dust from the Novi Sad city, Serbia. Science of the Total Environment, 647, 191–203.

    Article  CAS  Google Scholar 

  • Škrbić, B., Marinković, V., Antić, I., & Petrović Gegić, A. (2017). Seasonal variation and health risk assessment of organochlorine compounds in urban soils of Novi Sad, Serbia. Chemosphere, 181, 101–110.

    Article  CAS  Google Scholar 

  • Soltani, N., Keshavarzi, B., Moore, F., Tavakol, T., Lahijanzadeh, A. R., & Jaafarzadeh, N., Kermani,M. (2015). Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis Iran. Science of the Total Environment, 505, 712–723.

    Article  CAS  Google Scholar 

  • Soukarieh, B., El Hawari, K., El Husseini, M., Budzinski, H., & Jaber, F. (2018). Impact of Lebanese practices in industry, agriculture and urbanization on soil toxicity. Evaluation of the Polycyclic Aromatic Hydrocarbons (PAHs) levels in soil. Chemosphere, 210, 85–92.

    Article  CAS  Google Scholar 

  • Srogi, K. (2007). Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environmental Chemistry Letters, 5, 169–195.

    Article  CAS  Google Scholar 

  • Stafilov, T., Škrbić, B., Klanova, J., Čupr, P., Holoubek, I., Kočov, M., & Đurišić-Mladenović,N. (2011). Chemometric assessment of the semivolatile organic contaminants content in the atmosphere of the selected sites in the Republic of Macedonia. Journal of Chemometrics, 25, 262–274.

    Article  CAS  Google Scholar 

  • Stogiannidis, E., & Laane, R. (2015). Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: An overview of possibilities. Reviews of Environmental Contamination and Toxicolog. https://doi.org/10.1007/978-3-319-10638-0_2

    Article  Google Scholar 

  • Sun, S., Li, Y., Zhou, Y., Wang, H., & Sun, Y. (2012). Pilot study on PAHs of the atmosphere around the refuse incineration plant based on the technology of passive sampling. Environmental Sciences, 33, 4018–4024.

    Google Scholar 

  • Syed, J., H., Iqbal, M., Zhong G., Katsoyiannis, A., Yadav, I. C., & Li, J (2017). Polycyclic aromatic hydrocarbons (PAHs) in Chinese forest soils: profile composition, spatial variations and source apportionment. Scientific Reports, 7, 2692.

    Article  CAS  Google Scholar 

  • Tong, R., Yang, X., Su, H., Pan, Y., Zhang, Q., & Wang, J. (2018). Levels, sources and probabilistic health risks of polycyclic aromatic hydrocarbons in the agricultural soils from sites neighboring suburban industries in Shanghai. Science of the Total Environment, 616–617, 1365–1373.

    Article  CAS  Google Scholar 

  • Tong, Y., Chen, L., Liu, Y., Wang, Y., & Tian, S. (2019). Distribution, sources and ecological risk assessment of PAHs in surface seawater from coastal Bohai Bay, China. Marine Pollution Bulletin, 142, 520–524.

    Article  CAS  Google Scholar 

  • USEPA (Office of Research and Development, National Center for Environmental Assessment). (2011). Exposure Factors Handbook: 2011 Edition. EPA/600/R-090/052F. U·S. Environmental Protection Agency, Washington DC.

  • Van Brummelen, T. C., Verweij, R. A., Wedzinga, S. A., & Van Gestel, C. A. M. (1996). Enrichment of polycyclic aromatic hydrocarbons in forest soils near a blast furnace plant. Chemosphere, 32, 293–314.

    Article  Google Scholar 

  • Wang, J., Zhang, X., Ling, W., Liu, R., Liu, J., Kang, F., & Gao, Y. (2017). Contamination and health risk assessment of PAHs in soils and crops in industrial areas of the Yangtze River Delta region, China. Chemosphere, 168, 976–987.

    Article  CAS  Google Scholar 

  • Wang, X. T., Chen, L., Wang, X. K., Lei, B. L., Sun, Y. F., Zhou, J., & Wu, M.H. (2015). Occurrence, sources and health risk assessment of polycyclic aromatic hydrocarbons in urban (Pudong) and suburban soils from Shanghai in China. Chemosphere, 119, 1224–1232.

    Article  CAS  Google Scholar 

  • Xu, P., Tao, B., Ye, Z., Zhao, H., Ren, Y., Zhang, T., Huang,Y., & Chen,J. (2016). Polycyclic aromatic hydrocarbon concentrations, compositions, sources, and associated carcinogenic risks to humans in farmland soils and riverine sediments from Guiyu. China. Journal of Environmental Sciences (China). https://doi.org/10.1016/j.jes.2015.11.035

    Article  Google Scholar 

  • Xu, Y., Dai, S., Meng, K., Wang, Y., Ren, W., Zhao, L., Christie, P., & Teng,Y. (2018). Occurrence and risk assessment of potentially toxic elements and typical organic pollutants in contaminated rural soils. Science of the Total Environment, 630, 618–629.

    Article  CAS  Google Scholar 

  • Yin, C. Q., Jiang, X., Yang, X. L., Bian, Y. R., & Wang, F. (2008). Polycyclic aromatic hydrocarbons in the vicinity of Nanjing. China. Chemosphere, 73(3), 389–394.

    Article  CAS  Google Scholar 

  • Zakaria, M. P., Takada, H., & Tsutsumi, S. (2002). Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: a widespread input of petrogenic PAHs. Environmental Science and Technology, 36, 1907–1918.

    Article  CAS  Google Scholar 

  • Zeng, Q., Jeppesen, E., Gu, X., Mao, Z., & Chen, H. (2018). Distribution, fate and risk assessment of PAHs in water and sediments from an aquaculture- and shipping-impacted subtropical lake, China. Chemosphere, 201, 612–620.

    Article  CAS  Google Scholar 

  • Zhang, X. F., Chen, H. L., Ren, Z. H., Fu, X. J., & Yi, L. (2005). Research on indexes of remote sensing soil moisture for different soil types and crops. Meteorological Science and Technology, 33, 136–140.

    Google Scholar 

  • Zhao, L., Hou, H., Shangguan, Y., Cheng, B., Xu, Y., Zhao, R., Zhang, Y., Hua, X., Huo, X., & Zhao, X (2014). Occurrence, sources, and potential human health risks of polycyclic aromatic hydrocarbons in agricultural soils of the coal production area surrounding Xinzhou, China. Ecotoxicology and Environmental Safety, 108, 120–128.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The data presented here were obtained within the project PLANTSVITA (HUSRB/1602/41/0031) co-financed by the European Union through the Interreg-IPA Cross-border Cooperation Programme Hungary-Serbia, 2014-2020.

Funding

The data presented here were obtained within the project PLANTSVITA (HUSRB/1602/41/0031) co-financed by the European Union through the Interreg-IPA Cross-border Cooperation Programme Hungary-Serbia, 2014–2020.

Author information

Authors and Affiliations

Authors

Contributions

BŠ contributed to conceptualization; JŽ, IA, BŠ contributed to methodology; IA contributed to formal analysis and investigation. JŽ contributed to writing—original draft preparation; JŽ, BŠ contributed to writing—review and editing; BŠ, CV contributed to funding acquisition; BŠ, CV contributed to resources; BŠ contributed to study supervision.

All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Biljana D. Škrbić.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interests.

Consent to publish

All authors consent to the publication of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Škrbić, B.D., Antić, I., Živančev, J. et al. Comprehensive characterization of PAHs profile in Serbian soils for conventional and organic production: potential sources and risk assessment. Environ Geochem Health 43, 4201–4218 (2021). https://doi.org/10.1007/s10653-021-00884-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00884-4

Keywords

Navigation