Skip to main content

Advertisement

Log in

As(III) adsorption onto Fe-impregnated food waste biochar: experimental investigation, modeling, and optimization using response surface methodology

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Biochar derived from food waste was modified with Fe to enhance its adsorption capacity for As(III), which is the most toxic form of As. The synthesis of Fe-impregnated food waste biochar (Fe-FWB) was optimized using response surface methodology (RSM), and the pyrolysis time (1.0, 2.5, and 4.0 h), temperature (300, 450, and 600 °C), and Fe concentration (0.1, 0.3, and 0.5 M) were set as independent variables. The pyrolysis temperature and Fe concentration significantly influenced the As(III) removal, but the effect of pyrolysis time was insignificant. The optimum conditions for the synthesis of Fe-FWB were 1 h and 300 °C with a 0.42-M Fe concentration. Both physical and chemical properties of the optimized Fe-FWB were studied. They were also used for kinetic, equilibrium, thermodynamic, pH, and competing anion studies. Kinetic adsorption experiments demonstrated that the pseudo-second-order model had a superior fit for As(III) adsorption than the pseudo-first-order model. The maximum adsorption capacity derived from the Langmuir model was 119.5 mg/g, which surpassed that of other adsorbents published in the literature. Maximum As(III) adsorption occurred at an elevated pH in the range from 3 to 11 owing to the presence of As(III) as H2AsO3 above a pH of 9.2. A slight reduction in As(III) adsorption was observed in the existence of bicarbonate, hydrogen phosphate, nitrate, and sulfate even at a high concentration of 10 mM. This study demonstrates that aqueous solutions can be treated using Fe-FWB, which is an affordable and readily available resource for As(III) removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abedin, M. J., Cresser, M. S., Meharg, A. A., Feldmann, J., & Cotter-Howells, J. (2002). Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environmental Science & Technology, 36(5), 962–968.

    Article  CAS  Google Scholar 

  • Agrafioti, E., Kalderis, D., & Diamadopoulos, E. (2014). Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. Journal of Environmental Management, 133, 309–314.

    Article  CAS  Google Scholar 

  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., et al. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19–33.

    Article  CAS  Google Scholar 

  • Ali, S., Rizwan, M., Shakoor, M. B., Jilani, A., & Anjum, R. (2020). High sorption efficiency for As(III) and As(V) from aqueous solutions using novel almond shell biochar. Chemosphere, 243, 125330. https://doi.org/10.1016/j.chemosphere.2019.125330.

    Article  CAS  Google Scholar 

  • Aredes, S., Klein, B., & Pawlik, M. (2012). The removal of arsenic from water using natural iron oxide minerals. Journal of Cleaner Production, 29, 208–213.

    Article  CAS  Google Scholar 

  • Aredes, S., Klein, B., & Pawlik, M. (2013). The removal of arsenic from water using natural iron oxide minerals. Journal of Cleaner Production, 60, 71–76.

    Article  CAS  Google Scholar 

  • Asere, T. G., Stevens, C. V., & Du Laing, G. (2019). Use of (modified) natural adsorbents for arsenic remediation: A review. Science of the Total Environment, 676, 706–720. https://doi.org/10.1016/j.scitotenv.2019.04.237.

    Article  CAS  Google Scholar 

  • Baig, S. A., Zhu, J., Muhammad, N., Sheng, T., & Xu, X. (2014). Effect of synthesis methods on magnetic Kans grass biochar for enhanced As (III, V) adsorption from aqueous solutions. Biomass and Bioenergy, 71, 299–310.

    Article  CAS  Google Scholar 

  • Bakshi, S., Banik, C., Rathke, S. J., & Laird, D. A. (2018). Arsenic sorption on zero-valent iron-biochar complexes. Water Research, 137, 153–163.

    Article  CAS  Google Scholar 

  • Berg, M., Tran, H. C., Nguyen, T. C., Pham, H. V., Schertenleib, R., & Giger, W. (2001). Arsenic contamination of groundwater and drinking water in Vietnam: A human health threat. Environmental science & technology, 35(13), 2621–2626.

    Article  CAS  Google Scholar 

  • Boddu, V. M., Abburi, K., Talbott, J. L., Smith, E. D., & Haasch, R. (2008). Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent. Water Research, 42(3), 633–642.

    Article  CAS  Google Scholar 

  • Criscuoli, A., & Figoli, A. (2019). Pressure-driven and thermally-driven membrane operations for the treatment of arsenic-contaminated waters: A comparison. Journal of Hazardous Materials, 370, 147–155. https://doi.org/10.1016/j.jhazmat.2018.07.047.

    Article  CAS  Google Scholar 

  • Cumbal, L., & SenGupta, A. K. (2005). Arsenic removal using polymer-supported hydrated iron (III) oxide nanoparticles: Role of Donnan membrane effect. Environmental Science & Technology, 39(17), 6508–6515.

    Article  CAS  Google Scholar 

  • Fan, C.-S., Liou, S. Y. H., & Hou, C.-H. (2017). Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode. Chemosphere, 184, 924–931. https://doi.org/10.1016/j.chemosphere.2017.06.068.

    Article  CAS  Google Scholar 

  • Feng, Y., Liu, P., Wang, Y., Finfrock, Y. Z., Xie, X., Su, C., et al. (2020). Distribution and speciation of iron in Fe-modified biochars and its application in removal of As(V), As(III), Cr(VI), and Hg(II): An X-ray absorption study. Journal of Hazardous Materials, 384, 121342. https://doi.org/10.1016/j.jhazmat.2019.121342.

    Article  CAS  Google Scholar 

  • Fu, H., & Quan, X. (2006). Complexes of fulvic acid on the surface of hematite, goethite, and akaganeite: FTIR observation. Chemosphere, 63(3), 403–410.

    Article  CAS  Google Scholar 

  • Gimenez, J., Martinez, M., de Pablo, J., Rovira, M., & Duro, L. (2007). Arsenic sorption onto natural hematite, magnetite, and goethite. Journal of Hazardous Materials, 141(3), 575–580.

    Article  CAS  Google Scholar 

  • Gu, Z., Fang, J., & Deng, B. (2005). Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal. Environmental science & technology, 39(10), 3833–3843.

    Article  CAS  Google Scholar 

  • Gude, J. C. J., Joris, K., Huysman, K., Rietveld, L. C., & van Halem, D. (2018). Effect of supernatant water level on As removal in biological rapid sand filters. Water Research X, 1, 100013. https://doi.org/10.1016/j.wroa.2018.100013.

    Article  CAS  Google Scholar 

  • Guo, J., Yan, C., Luo, Z., Fang, H., Hu, S., & Cao, Y. (2019). Synthesis of a novel ternary HA/Fe-Mn oxide-loaded biochar composite and its application in cadmium(II) and arsenic(V) adsorption. Journal of Environmental Sciences. https://doi.org/10.1016/j.jes.2019.06.004.

    Article  Google Scholar 

  • Gupta, A., Chauhan, V. S., & Sankararamakrishnan, N. (2009). Preparation and evaluation of iron–chitosan composites for removal of As (III) and As (V) from arsenic contaminated real life groundwater. Water Research, 43(15), 3862–3870.

    Article  CAS  Google Scholar 

  • Hao, L., Zheng, T., Jiang, J., Zhang, G., & Wang, P. (2016). Removal of As(III) and As(V) from water using iron doped amino functionalized sawdust: Characterization, adsorptive performance and UF membrane separation. Chemical Engineering Journal, 292, 163–173. https://doi.org/10.1016/j.cej.2016.01.097.

    Article  CAS  Google Scholar 

  • Haque, M. N., Morrison, G. M., Perrusquía, G., Gutierréz, M., Aguilera, A. F., Cano-Aguilera, I., et al. (2007). Characteristics of arsenic adsorption to sorghum biomass. Journal of Hazardous Materials, 145(1), 30–35. https://doi.org/10.1016/j.jhazmat.2006.10.080.

    Article  CAS  Google Scholar 

  • He, R., Wang, Z., Tan, L., Zhong, Y., Li, W., Xing, D., et al. (2018). Design and fabrication of highly ordered ion imprinted SBA-15 and MCM-41 mesoporous organosilicas for efficient removal of Ni2+ from different properties of wastewaters. Microporous and Mesoporous Materials, 257, 212–221. https://doi.org/10.1016/j.micromeso.2017.08.007.

    Article  CAS  Google Scholar 

  • Ho, Y.-S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136(3), 681–689. https://doi.org/10.1016/j.jhazmat.2005.12.043.

    Article  CAS  Google Scholar 

  • Hu, Q., Liu, Y., Gu, X., & Zhao, Y. (2017). Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe2O4 magnetic nanoparticles. Chemosphere, 181, 328–336.

    Article  CAS  Google Scholar 

  • Hu, X., Ding, Z., Zimmerman, A. R., Wang, S., & Gao, B. (2015). Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Research, 68, 206–216. https://doi.org/10.1016/j.watres.2014.10.009.

    Article  CAS  Google Scholar 

  • Iesan, C. M., Capat, C., Ruta, F., & Udrea, I. (2008). Evaluation of a novel hybrid inorganic/organic polymer type material in the Arsenic removal process from drinking water. Water Research, 42(16), 4327–4333. https://doi.org/10.1016/j.watres.2008.06.011.

    Article  CAS  Google Scholar 

  • Jackson, B. (2018). Don’t waste that banchan: Where South Korea’s food waste goes. Korea Exposé. https://www. koreaexpose. com/banchan-south-korea-food-waste/. Accessed on, 18, 2019.

  • Karunanayake, A. G., Todd, O. A., Crowley, M., Ricchetti, L., Pittman, C. U., Jr., Anderson, R., et al. (2018). Lead and cadmium remediation using magnetized and nonmagnetized biochar from Douglas fir. Chemical Engineering Journal, 331, 480–491.

    Article  CAS  Google Scholar 

  • Kim, Y. S., Jang, J. Y., Park, S. J., & Um, B. H. (2018). Dilute sulfuric acid fractionation of Korean food waste for ethanol and lactic acid production by yeast. Waste Management, 74, 231–240.

    Article  CAS  Google Scholar 

  • Kim, M. J., Hong, S. H., Lee, J. I., Lee, C. G., & Park, S. J. (2019). Removal of fluoride from water using thermally treated dolomite and optimization of experimental conditions using response surface methodology. Desalination and Water Treatment, 155, 311–320.

    Article  CAS  Google Scholar 

  • Kosmulski, M. (2009). pH-dependent surface charging and points of zero charge IV Update and new approach. Journal of Colloid and Interface Science, 337(2), 439–448.

    Article  CAS  Google Scholar 

  • Kumar, M., RaoT, S., Isloor, A. M., Ibrahim, G. S., Ismail, N., Ismail, A. F., et al. (2019). Use of cellulose acetate/polyphenylsulfone derivatives to fabricate ultrafiltration hollow fiber membranes for the removal of arsenic from drinking water. International journal of biological macromolecules, 129, 715–727.

    Article  CAS  Google Scholar 

  • Lee, C.-G., Alvarez, P. J. J., Nam, A., Park, S.-J., Do, T., Choi, U.-S., et al. (2017). Arsenic(V) removal using an amine-doped acrylic ion exchange fiber: Kinetic, equilibrium, and regeneration studies. Journal of Hazardous Materials, 325, 223–229. https://doi.org/10.1016/j.jhazmat.2016.12.003.

    Article  CAS  Google Scholar 

  • Lee, C.-G., Hong, S.-H., Hong, S.-G., Choi, J.-W., & Park, S.-J. (2019). Production of biochar from food waste and its application for phenol removal from aqueous solution. Water Air & Soil Pollution, 230(3), 70.

    Article  CAS  Google Scholar 

  • Lee, C.-G., & Kim, S.-B. (2016). Removal of arsenic and selenium from aqueous solutions using magnetic iron oxide nanoparticle/multi-walled carbon nanotube adsorbents. Desalination and Water Treatment, 57(58), 28323–28339.

    Article  CAS  Google Scholar 

  • Li, L., Lai, C., Huang, F., Cheng, M., Zeng, G., Huang, D., et al. (2019). Degradation of naphthalene with magnetic bio-char activate hydrogen peroxide: Synergism of bio-char and Fe–Mn binary oxides. Water Research, 160, 238–248.

    Article  CAS  Google Scholar 

  • Li, R., Li, Q., Gao, S., & Shang, J. K. (2012). Exceptional arsenic adsorption performance of hydrous cerium oxide nanoparticles: Part A. Adsorption capacity and mechanism. Chemical Engineering Journal, 185–186, 127–135. https://doi.org/10.1016/j.cej.2012.01.061.

    Article  CAS  Google Scholar 

  • Li, W.-G., Gong, X.-J., Wang, K., Zhang, X.-R., & Fan, W.-B. (2014). Adsorption characteristics of arsenic from micro-polluted water by an innovative coal-based mesoporous activated carbon. Bioresource Technology, 165, 166–173.

    Article  CAS  Google Scholar 

  • Li, Y., Wang, J., Luan, Z., & Liang, Z. (2010). Arsenic removal from aqueous solution using ferrous based red mud sludge. Journal of Hazardous Materials, 177(1–3), 131–137.

    Article  CAS  Google Scholar 

  • Lin, L., Qiu, W., Wang, D., Huang, Q., Song, Z., & Chau, H. W. (2017). Arsenic removal in aqueous solution by a novel Fe-Mn modified biochar composite: Characterization and mechanism. Ecotoxicology and Environmental Safety, 144, 514–521.

    Article  CAS  Google Scholar 

  • Lin, L., Song, Z., Khan, Z. H., Liu, X., & Qiu, W. (2019a). Enhanced As(III) removal from aqueous solution by Fe-Mn-La-impregnated biochar composites. Science of the Total Environment, 686, 1185–1193. https://doi.org/10.1016/j.scitotenv.2019.05.480.

    Article  CAS  Google Scholar 

  • Lin, L., Zhang, G., Liu, X., Khan, Z. H., Qiu, W., & Song, Z. (2019b). Synthesis and adsorption of FeMnLa-impregnated biochar composite as an adsorbent for As(III) removal from aqueous solutions. Environmental Pollution, 247, 128–135. https://doi.org/10.1016/j.envpol.2019.01.044.

    Article  CAS  Google Scholar 

  • Lonsdale, H. K., Pusch, W., & Walch, A. (1975). Donnan-membrane effects in hyperfiltration of ternary systems. Journal of the chemical society faraday transactions 1: Physical chemistry in condensed phases. https://doi.org/10.1039/f19757100501.

    Article  Google Scholar 

  • Luo, J., Meng, X., Crittenden, J., Qu, J., Hu, C., Liu, H., et al. (2018). Arsenic adsorption on α-MnO2 nanofibers and the significance of (1 0 0) facet as compared with (1 1 0). Chemical Engineering Journal, 331, 492–500.

    Article  CAS  Google Scholar 

  • Luo, M., Lin, H., He, Y., Li, B., Dong, Y., & Wang, L. (2019). Efficient simultaneous removal of cadmium and arsenic in aqueous solution by titanium-modified ultrasonic biochar. Bioresource Technology, 284, 333–339. https://doi.org/10.1016/j.biortech.2019.03.108.

    Article  CAS  Google Scholar 

  • Luo, X., Wang, C., Wang, L., Deng, F., Luo, S., Tu, X., et al. (2013). Nanocomposites of graphene oxide-hydrated zirconium oxide for simultaneous removal of As (III) and As (V) from water. Chemical Engineering Journal, 220, 98–106.

    Article  CAS  Google Scholar 

  • Luong, V. T., Cañas Kurz, E. E., Hellriegel, U., Luu, T. L., Hoinkis, J., & Bundschuh, J. (2018). Iron-based subsurface arsenic removal technologies by aeration: A review of the current state and future prospects. Water Research, 133, 110–122. https://doi.org/10.1016/j.watres.2018.01.007.

    Article  CAS  Google Scholar 

  • Mandal, S., Sahu, M. K., & Patel, R. K. (2013). Adsorption studies of arsenic(III) removal from water by zirconium polyacrylamide hybrid material (ZrPACM-43). Water Resources and Industry, 4, 51–67. https://doi.org/10.1016/j.wri.2013.09.003.

    Article  Google Scholar 

  • Manju, G., Raji, C., & Anirudhan, T. (1998). Evaluation of coconut husk carbon for the removal of arsenic from water. Water Research, 32(10), 3062–3070.

    Article  CAS  Google Scholar 

  • Matsunaga, H., Yokoyama, T., Eldridge, R. J., & Bolto, B. A. (1996). Adsorption characteristics of arsenic (III) and arsenic (V) on iron (III)-loaded chelating resin having lysine-Nα, Nα-diacetic acid moiety. Reactive and functional polymers, 29(3), 167–174.

    Article  CAS  Google Scholar 

  • Medpelli, D., Sandoval, R., Sherrill, L., Hristovski, K., & Seo, D.-K. (2015). Iron oxide-modified nanoporous geopolymers for arsenic removal from ground water. Resource-Efficient Technologies, 1(1), 19–27.

    Article  Google Scholar 

  • Milonjić, S., Kopečni, M., & Ilić, Z. (1983). The point of zero charge and adsorption properties of natural magnetite. Journal of Radioanalytical Chemistry, 78(1), 15–24.

    Article  Google Scholar 

  • Min, D. K., & Rhee, S. W. (2014). Management of municipal solid waste in Korea. In A. Pariatamby & M. Tanaka (Eds.), Municipal solid waste management in Asia and the Pacific Islands. Environmental science and engineering. Singapore: Springer.

    Google Scholar 

  • Mohan, D., Sarswat, A., Ok, Y. S., & Pittman, C. U., Jr. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review. Bioresource Technology, 160, 191–202.

    Article  CAS  Google Scholar 

  • Monárrez-Cordero, B., Sáenz-Trevizo, A., Bautista-Carrillo, L., Silva-Vidaurri, L., Miki-Yoshida, M., & Amézaga-Madrid, P. (2018). Simultaneous and fast removal of As3+, As5+, Cd2+, Cu2+, Pb2+ and F− from water with composite Fe-Ti oxides nanoparticles. Journal of Alloys and Compounds, 757, 150–160.

    Article  CAS  Google Scholar 

  • Moulder, J. F., Chastain, J., & King, R. C. (1995). Handbook of X-ray photoelectron spectroscopy: A reference book of standard spectra for identification and interpretation of XPS data. USA: Physical Electronics.

    Google Scholar 

  • Mubarak, N., Kundu, A., Sahu, J., Abdullah, E., & Jayakumar, N. (2014). Synthesis of palm oil empty fruit bunch magnetic pyrolytic char impregnating with FeCl3 by microwave heating technique. Biomass and Bioenergy, 61, 265–275.

    Article  CAS  Google Scholar 

  • Muñoz, J. A., Gonzalo, A., & Valiente, M. (2002). Arsenic adsorption by Fe (III)-loaded open-celled cellulose sponge. Thermodynamic and selectivity aspects. Environmental science & technology, 36(15), 3405–3411.

    Article  CAS  Google Scholar 

  • Nasir, A. M., Goh, P. S., & Ismail, A. F. (2019). Highly adsorptive polysulfone/hydrous iron-nickel-manganese (PSF/HINM) nanocomposite hollow fiber membrane for synergistic arsenic removal. Separation and Purification Technology, 213, 162–175. https://doi.org/10.1016/j.seppur.2018.12.040.

    Article  CAS  Google Scholar 

  • Nath, B. K., Chaliha, C., & Kalita, E. (2019). Iron oxide Permeated Mesoporous rice-husk nanobiochar (IPMN) mediated removal of dissolved arsenic (As): Chemometric modelling and adsorption dynamics. Journal of Environmental Management, 246, 397–409. https://doi.org/10.1016/j.jenvman.2019.06.008.

    Article  CAS  Google Scholar 

  • Navarathna, C. M., Karunanayake, A. G., Gunatilake, S. R., Pittman, C. U., Perez, F., Mohan, D., et al. (2019). Removal of Arsenic(III) from water using magnetite precipitated onto Douglas fir biochar. Journal of Environmental Management, 250, 109429. https://doi.org/10.1016/j.jenvman.2019.109429.

    Article  CAS  Google Scholar 

  • Niazi, N. K., Bibi, I., Shahid, M., Ok, Y. S., Burton, E. D., Wang, H., et al. (2018). Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination. Environmental Pollution, 232, 31–41. https://doi.org/10.1016/j.envpol.2017.09.051.

    Article  CAS  Google Scholar 

  • Nordstrom, D. K. (2002). Worldwide occurrences of arsenic in ground water. American Association for the Advancement of Science. https://doi.org/10.1126/science.1072375.

    Article  Google Scholar 

  • Ociński, D., Jacukowicz-Sobala, I., Raczyk, J., & Kociołek-Balawejder, E. (2014). Evaluation of hybrid polymer containing iron oxides as As (III) and As (V) sorbent for drinking water purification. Reactive and functional polymers, 83, 24–32.

    Article  CAS  Google Scholar 

  • Ortega, A., Oliva, I., Contreras, K. E., González, I., Cruz-Díaz, M. R., & Rivero, E. P. (2017). Arsenic removal from water by hybrid electro-regenerated anion exchange resin/electrodialysis process. Separation and Purification Technology, 184, 319–326. https://doi.org/10.1016/j.seppur.2017.04.050.

    Article  CAS  Google Scholar 

  • Özçimen, D., & Ersoy-Meriçboyu, A. (2010). Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renewable Energy, 35(6), 1319–1324.

    Article  CAS  Google Scholar 

  • Park, J.-D., Choi, S.-J., Choi, B.-S., Lee, C.-R., Kim, H., Kim, Y.-D., et al. (2016). Arsenic levels in the groundwater of Korea and the urinary excretion among contaminated area. Journal of Exposure Science and Environmental Epidemiology, 26(5), 458.

    Article  CAS  Google Scholar 

  • Park, S.-J., & An, H.-K. (2016). Optimization of fabrication parameters for nanofibrous composite membrane using response surface methodology. Desalination and Water Treatment, 57(43), 20188–20198. https://doi.org/10.1080/19443994.2015.1109557.

    Article  CAS  Google Scholar 

  • Peiris, C., Nayanathara, O., Navarathna, C. M., Jayawardhana, Y., Nawalage, S., Burk, G., et al. (2019). The influence of three acid modifications on the physicochemical characteristics of tea-waste biochar pyrolyzed at different temperatures: a comparative study. Rsc Advances, 9(31), 17612–17622.

    Article  CAS  Google Scholar 

  • Pierce, M. L., & Moore, C. B. (1982). Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Research, 16(7), 1247–1253.

    Article  CAS  Google Scholar 

  • Puziy, A. M., Poddubnaya, O. I., Socha, R. P., Gurgul, J., & Wisniewski, M. (2008). XPS and NMR studies of phosphoric acid activated carbons. Carbon, 46(15), 2113–2123. https://doi.org/10.1016/j.carbon.2008.09.010.

    Article  CAS  Google Scholar 

  • Radu, T., Subacz, J. L., Phillippi, J. M., & Barnett, M. O. (2005). Effects of dissolved carbonate on arsenic adsorption and mobility. Environmental science & technology, 39(20), 7875–7882.

    Article  CAS  Google Scholar 

  • Ralebitso-Senior, T. K., & Orr, C. H. (2016). Biochar application. Elsevier, Netherland: Essential soil microbial ecology.

    Google Scholar 

  • Reed, B. E., Vaughan, R., & Jiang, L. (2000). As (III), As (V), Hg, and Pb removal by Fe-oxide impregnated activated carbon. Journal of Environmental Engineering, 126(9), 869–873.

    Article  CAS  Google Scholar 

  • Reguyal, F., & Sarmah, A. K. (2018). Adsorption of sulfamethoxazole by magnetic biochar: Effects of pH, ionic strength, natural organic matter and 17α-ethinylestradiol. Science of The Total Environment, 628–629, 722–730. https://doi.org/10.1016/j.scitotenv.2018.01.323.

    Article  CAS  Google Scholar 

  • Ren, X., Zhang, Z., Luo, H., Hu, B., Dang, Z., Yang, C., et al. (2014). Adsorption of arsenic on modified montmorillonite. Applied Clay Science, 97, 17–23.

    Article  CAS  Google Scholar 

  • RubeenaReddyLaijuNidheesh, K. K. H. P. P. A. R. P. V. (2018). Iron impregnated biochars as heterogeneous Fenton catalyst for the degradation of acid red 1 dye. Journal of Environmental Management, 226, 320–328. https://doi.org/10.1016/j.jenvman.2018.08.055.

    Article  CAS  Google Scholar 

  • Ruiping, L., Lihua, S., Jiuhui, Q., & Guibai, L. (2009). Arsenic removal through adsorption, sand filtration and ultrafiltration: In situ precipitated ferric and manganese binary oxides as adsorbents. Desalination, 249(3), 1233–1237. https://doi.org/10.1016/j.desal.2009.06.032.

    Article  CAS  Google Scholar 

  • Saha, S., & Sarkar, P. (2012). Arsenic remediation from drinking water by synthesized nano-alumina dispersed in chitosan-grafted polyacrylamide. Journal of Hazardous Materials, 227–228, 68–78. https://doi.org/10.1016/j.jhazmat.2012.05.001.

    Article  CAS  Google Scholar 

  • Samsuri, A. W., Sadegh-Zadeh, F., & Seh-Bardan, B. J. (2013). Adsorption of As (III) and As (V) by Fe coated biochars and biochars produced from empty fruit bunch and rice husk. Journal of Environmental Chemical Engineering, 1(4), 981–988.

    Article  CAS  Google Scholar 

  • Sánchez-Rivera, D., Perales-Pérez, O., & Román, F. R. (2013). Removal of inorganic arsenic oxyanions using Ca–Fe (III) alginate beads. Desalination and Water Treatment, 51(10–12), 2162–2169.

    Article  CAS  Google Scholar 

  • Shukla, A., & Srivastava, S. (2019). Chapter 8 - A review of phytoremediation prospects for arsenic contaminated water and soil. In V. C. Pandey & K. Bauddh (Eds.), Phytomanagement of polluted sites (pp. 243–254). Netherland: Elsevier.

    Chapter  Google Scholar 

  • Sigdel, A., Park, J., Kwak, H., & Park, P.-K. (2016). Arsenic removal from aqueous solutions by adsorption onto hydrous iron oxide-impregnated alginate beads. Journal of Industrial and Engineering Chemistry, 35, 277–286. https://doi.org/10.1016/j.jiec.2016.01.005.

    Article  CAS  Google Scholar 

  • Smith, A. H., Lingas, E. O., & Rahman, M. (2000). Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bulletin of the World Health Organization, 78, 1093–1103.

    CAS  Google Scholar 

  • Song, X., Zhang, Y., Luo, X., Chen, P., & Liu, J. (2019). 2D magnetic scallion sheathing-based biochar composites design and application for effective removal of arsenite in aqueous solutions. Chemical Engineering Research and Design, 152, 384–392. https://doi.org/10.1016/j.cherd.2019.10.007.

    Article  CAS  Google Scholar 

  • Stachowicz, M., Hiemstra, T., & van Riemsdijk, W. H. (2008). Multi-competitive interaction of As (III) and As (V) oxyanions with Ca2+, Mg2+, PO3− 4, and CO2− 3 ions on goethite. Journal of Colloid and Interface Science, 320(2), 400–414.

    Article  CAS  Google Scholar 

  • Taleb, K., Rušmirović, J., Rančić, M., Nikolić, J., Drmanić, S., Veličković, Z., et al. (2016). Efficient pollutants removal by amino-modified nanocellulose impregnated with iron oxide. Journal of the Serbian Chemical Society, 81(10), 1199–1213.

    Article  CAS  Google Scholar 

  • Terzyk, A. P. (2001). The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro Part II. TG, FTIR, and XPS analysis of carbons and the temperature dependence of adsorption kinetics at the neutral pH. Colloids and Surfaces A Physicochemical and Engineering Aspects, 177(1), 23–45.

    Article  CAS  Google Scholar 

  • Tsiepe, J., Mamba, B., Abd-El-Aziz, A. S., & Mishra, A. (2018). Fe 3 O 4–β-cyclodextrin–Chitosan bionanocomposite for arsenic removal from aqueous solution. Journal of Inorganic and Organometallic Polymers and Materials, 28(2), 467–480.

    Article  CAS  Google Scholar 

  • Van Vinh, N., Zafar, M., Behera, S., & Park, H.-S. (2015). Arsenic (III) removal from aqueous solution by raw and zinc-loaded pine cone biochar: equilibrium, kinetics, and thermodynamics studies. International journal of environmental science and technology, 12(4), 1283–1294.

    Article  CAS  Google Scholar 

  • Vatutsina, O., Soldatov, V., Sokolova, V., Johann, J., Bissen, M., & Weissenbacher, A. (2007). A new hybrid (polymer/inorganic) fibrous sorbent for arsenic removal from drinking water. Reactive and functional polymers, 67(3), 184–201.

    Article  CAS  Google Scholar 

  • Verma, L., & Singh, J. (2019). Synthesis of novel biochar from waste plant litter biomass for the removal of Arsenic (III and V) from aqueous solution: A mechanism characterization, kinetics and thermodynamics. Journal of Environmental Management, 248, 109235.

    Article  CAS  Google Scholar 

  • Wang, Y., & Liu, R. (2018). H2O2 treatment enhanced the heavy metals removal by manure biochar in aqueous solutions. Science of The Total Environment, 628–629, 1139–1148. https://doi.org/10.1016/j.scitotenv.2018.02.137.

    Article  CAS  Google Scholar 

  • Wei, Y., Wei, S., Liu, C., Chen, T., Tang, Y., Ma, J., et al. (2019). Efficient removal of arsenic from groundwater using iron oxide nanoneedle array-decorated biochar fibers with high Fe utilization and fast adsorption kinetics. Water Research, 167, 115107. https://doi.org/10.1016/j.watres.2019.115107.

    Article  CAS  Google Scholar 

  • Wilkie, J. A., & Hering, J. G. (1996). Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 107, 97–110.

    Article  CAS  Google Scholar 

  • Xia, D., Tan, F., Zhang, C., Jiang, X., Chen, Z., Li, H., et al. (2016). ZnCl2-activated biochar from biogas residue facilitates aqueous As(III) removal. Applied Surface Science, 377, 361–369. https://doi.org/10.1016/j.apsusc.2016.03.109.

    Article  CAS  Google Scholar 

  • Xu, F., Chen, H., Dai, Y., Wu, S., & Tang, X. (2019). Arsenic adsorption and removal by a new starch stabilized ferromanganese binary oxide in water. Journal of Environmental Management, 245, 160–167.

    Article  CAS  Google Scholar 

  • Yazdani, M. R., Tuutijärvi, T., Bhatnagar, A., & Vahala, R. (2016). Adsorptive removal of arsenic (V) from aqueous phase by feldspars: kinetics, mechanism, and thermodynamic aspects of adsorption. Journal of Molecular Liquids, 214, 149–156.

    Article  CAS  Google Scholar 

  • Yi, Y., Tu, G., Tsang, P. E., & Fang, Z. (2020). Insight into the influence of pyrolysis temperature on Fenton-like catalytic performance of magnetic biochar. Chemical Engineering Journal, 380, 122518.

    Article  CAS  Google Scholar 

  • Zarei, S., Niad, M., & Raanaei, H. (2018). The removal of mercury ion pollution by using Fe3O4-nanocellulose: Synthesis, characterizations and DFT studies. Journal of Hazardous Materials, 344, 258–273.

    Article  CAS  Google Scholar 

  • Zdravkov, B. D., Čermák, J. J., Šefara, M., & Janků, J. (2007). Pore classification in the characterization of porous materials: A perspective. Central European journal of chemistry, 5(2), 385–395.

    CAS  Google Scholar 

  • Zhang, K., Cheng, L., Weir, M. D., Bai, Y.-X., & Xu, H. H. K. (2015). Effects of quaternary ammonium chain length on the antibacterial and remineralizing effects of a calcium phosphate nanocomposite. International Journal of Oral Science, 8, 45. https://doi.org/10.1038/ijos.2015.33.

    Article  CAS  Google Scholar 

  • Zhang, M., Gao, B., Varnoosfaderani, S., Hebard, A., Yao, Y., & Inyang, M. (2013). Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresource Technology, 130, 457–462. https://doi.org/10.1016/j.biortech.2012.11.132.

    Article  CAS  Google Scholar 

  • Zhang, S., Li, X.-Y., & Chen, J. P. (2010a). Preparation and evaluation of a magnetite-doped activated carbon fiber for enhanced arsenic removal. Carbon, 48(1), 60–67. https://doi.org/10.1016/j.carbon.2009.08.030.

    Article  CAS  Google Scholar 

  • Zhang, S., Niu, H., Cai, Y., Zhao, X., & Shi, Y. (2010b). Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chemical Engineering Journal, 158(3), 599–607.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2017R1D1A1B03030649).

Funding

This study was funded by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2017R1D1A1B03030649).

Author information

Authors and Affiliations

Authors

Contributions

FNL contributed to investigation, writing—original draft preparation, data analysis; SHH helped in conceptualization, investigation, experiment, data analysis; EJC contributed to experiment; JKK helped in data analysis; CGL contributed to writing—reviewing and editing; SJP helped in conceptualization, writing—reviewing and editing, supervision, funding acquisition.

Corresponding author

Correspondence to Seong-Jik Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyonga, F.N., Hong, SH., Cho, EJ. et al. As(III) adsorption onto Fe-impregnated food waste biochar: experimental investigation, modeling, and optimization using response surface methodology. Environ Geochem Health 43, 3303–3321 (2021). https://doi.org/10.1007/s10653-020-00739-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00739-4

Keywords

Navigation