Skip to main content
Log in

Fe3O4–β-cyclodextrin–Chitosan Bionanocomposite for Arsenic Removal from Aqueous Solution

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The aim of this present work is to investigate the adsorption capacity, kinetics and mechanism of arsenite ion removal onto beta-Cyclodextrin–Chitosan–Fe3O4 nanocomposite (β-CD–CS–Fe3O4 nanocomposite) from aqueous solutions. Iron oxide nanoparticles (Fe3O4) were synthesized using the co-precipitation method and the nanocomposite was successfully prepared via the solution-blending method. The analysis to determine arsenite ion adsorption was carried out using ICP-MS by varying pH, contact time and arsenite concentration parameters. The sorption of arsenite was found to be dependent on pH, time and arsenite initial concentrations. The adsorption equilibrium was reached in the first 20 min with the maximum uptake of 96%. Adsorption data were fitted well to the Langmuir isotherm describing a monolayer adsorption mechanism and pseudo-second-order models for kinetic study. It was established that the β-CD–CS polymer blend grafted with Fe3O4 nanoparticles enhanced the adsorption capacity because of the complexation abilities of the multiple OH and NH2 groups in the polymer backbone with metal ions. Subsequently, the mechanism of adsorption was investigated by studying the physicochemical properties of the adsorbent and the adsorbed species using the FTIR, TGA, DSC, XRD, SEM and TEM techniques. The characterizations before and after incorporations of the β-CD–CS composite with Fe3O4 nanoparticles showed well-improved properties for better adsorption of arsenite (As(III)) ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. J.J. Nadakavukaren, R.L. Ingermann, G. Jeddeloh, S.J. Falkowski, Seasonal variation of arsenic concentration in well water in Lane County, Oregon. Bull. Environ. Contam. Toxicol. 33, 264–269 (1984)

    Article  CAS  Google Scholar 

  2. A.H. Malik, Z.M. Khan, Q. Mahmood, S. Nasreen, Z.A. Bhatti, Perspectives of low cost arsenic remediation of drinking water in Pakistan and other countries. J. Hazard. Mater. 168, 1–12 (2009)

    Article  CAS  Google Scholar 

  3. M. Shih, An overview of arsenic removal by pressure-driven membrane processes. Desalination 172, 85–97 (2005)

    Article  CAS  Google Scholar 

  4. Y. Wei, Y. Zheng, J.P. Chen, Enhanced adsorption of arsenate onto a natural polymer-based sorbent by surface atom transfer radical polymerization. J. Colloid Interface Sci. 356, 234–239 (2011)

    Article  CAS  Google Scholar 

  5. B.K. Mandal, K.T. Suzuki, Arsenic round the world: a review. Talanta 58, 201–235 (2002)

    Article  CAS  Google Scholar 

  6. A.H. Smith et al., Cancer risks from arsenic in drinking water. Environ. Health Perspect. 97, 259–267 (1992)

    Article  CAS  Google Scholar 

  7. E. Vunain, A.K. Mishra, R.W. Krause, Fabrication, Characterization and application of polymer nanocomposites for arsenic(III) removal from water. J. Inorg. Organomet. Polym. 23, 293–305 (2013)

    Article  CAS  Google Scholar 

  8. C.K. Jain, I. Ali, Arsenic: occurrence, toxicity and speciation techniques. Water Res. 34, 4304–4312 (2000)

    Article  CAS  Google Scholar 

  9. J.C. Ng, J. Wang, A. Shraim, A global health problem caused by arsenic from natural sources. Chemosphere 52, 1353–1359 (2003)

    Article  CAS  Google Scholar 

  10. C.E. Borba, R. Guirardello, E.A. Silva, M.T. Veit, C.R.G. Tavares, Removal of nickel (II) ions from aqueous solution by biosorption in a fixed bed column: experimental and theoretical breakthrough curves. Biochem. Eng. J. 30, 184–191 (2006)

    Article  CAS  Google Scholar 

  11. N. Oyaro, O. Juddy, E.N.M. Murago, E. Gitonga, The contents of Pb, Cu, Zn and Cd in meat in Nairobi, Kenya. J. Food. Agric. Environ. 5, 119–121 (2007)

    CAS  Google Scholar 

  12. A.T. Paulino et al., Novel adsorbent based on silkworm chrysalides for removal of heavy metals from wastewaters. J. Colloid Interface Sci. 301, 479–487 (2006)

    Article  CAS  Google Scholar 

  13. C. Namasivayam, K. Kadirvelu, Uptake of mercury (II) from wastewater by activated carbon from an unwanted agricultural solid by-product: coirpith. Carbon 37, 79–84 (1999)

    Article  CAS  Google Scholar 

  14. R. Naseem, S.S. Tahir, Removal of Pb(II) from aqueous/acidic solutions by using bentonite as an adsorbent. Water Res. 35, 3982–3986 (2001)

    Article  CAS  Google Scholar 

  15. L. Khezami, R. Capart, Removal of chromium (VI) from aqueous solution by activated carbons: kinetic and equilibrium studies. J. Hazard. Mater. 123, 223–231 (2005)

    Article  CAS  Google Scholar 

  16. J.F. Ferguson, J.F. Ferguson, A review of the arsenic cycle in natural waters. Water Res. 6, 1259–1274 (2000)

    Article  Google Scholar 

  17. P.L. Smedley, D.G. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17, 517–568 (2002)

    Article  CAS  Google Scholar 

  18. S. Wang, C.N. Mulligan, Occurrence of arsenic contamination in Canada: sources, behavior and distribution. Sci. Total Environ. 366, 701–721 (2006)

    Article  CAS  Google Scholar 

  19. M.M. Ghosh, J.R. Yuan, Adsorption of inorganic arsenic and organoarsenicals on hydrous oxides. Environ. Prog. 6, 150–157 (1987)

    Article  CAS  Google Scholar 

  20. D. Van Halem, S.A. Van Bakker, G.L. Amy, J.C. Dijk, Arsenic in drinking water: a worldwide water quality concern for water supply companies. Drink. Water Eng. Sci. 2, 29–34 (2009)

    Article  Google Scholar 

  21. B. Al-rashdi, C. Somerfield, N. Hilal, Heavy metals removal using adsorption and nanofiltration techniques and nanofiltration techniques. Sep. Purif. Rev. 40, 209–259 (2016)

    Article  Google Scholar 

  22. Ö Arar, Ü Yüksel, N. Kabay, M. Yüksel, Removal of Cu2+ ions by a micro-flow electrodeionization (EDI) system. Desalination 277, 296–300 (2011)

    Article  CAS  Google Scholar 

  23. H. Modin, K.M. Persson, A. Andersson, M. Praagh, Van, Removal of metals from landfill leachate by sorption to activated carbon, bone meal and iron fines. J. Hazard. Mater. 189, 749–754 (2011)

    Article  CAS  Google Scholar 

  24. H.K. Hansen, C. Gutie, L.M. Ottosen, Electrochemical peroxidation as a tool to remove arsenic and copper from smelter wastewater. J. Appl. Electrochem. 40, 1031–1038 (2010)

    Article  Google Scholar 

  25. D. Adrian, Review paper a review of potentially low-cost sorbents for heavy metals. Water Res. 33, 2469–2479 (1999)

    Article  Google Scholar 

  26. S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J. Hazard. Mater. 97, 219–243 (2003)

    Article  CAS  Google Scholar 

  27. B.A. Veen, J.C.M. Van Der Uitdehaag, B.W. Dijkstra, Engineering of cyclodextrin glycosyltransferase reaction and product specificity. Biochim. Biophys. Acta 1543, 336–360 (2000)

    Article  Google Scholar 

  28. J. Szejtli, Past, present, and future of cyclodextrin research. Pure Appl. Chem. 76, 1825–1845 (2004)

    Article  CAS  Google Scholar 

  29. F. Hapiot, S. Tilloy, E. Monflier, Cyclodextrins as supramolecular hosts for organometallic complexes. Chem. Rev. 106, 768–781 (2006)

    Article  Google Scholar 

  30. Y. Chang, D. Chen, Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions. J. Colloid Interface Sci. 283, 446–451 (2005)

    Article  CAS  Google Scholar 

  31. M. Liao, D. Chen, Fast and efficient adsorption/desorption of protein by a novel magnetic nano-adsorbent. Biotechnol. Lett. 24, 1913–1917 (2002)

    Article  CAS  Google Scholar 

  32. M. Liao, D. Chen, Preparation and characterization of a novel magnetic. J. Mater. Chem. 12, 3654–3659 (2002)

    Article  CAS  Google Scholar 

  33. Y. Sun, Preparation and magnetic properties of spindle porous iron nanoparticles. Mater. Res. Bull. 44, 961–965 (2009)

    Article  Google Scholar 

  34. A. Kumar, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005)

    Article  Google Scholar 

  35. D.J. Greenland et al., Adsorption of polyvinyl alcohols by montmorillonite. J. Colloid. Sci. 18, 647–664 (1963)

    Article  CAS  Google Scholar 

  36. A.K. Mishra, A.K. Sharma, Synthesis of γ-cyclodextrin/chitosan composites for the efficient removal of Cd(II) from aqueous solution. Int. J. Biol. Macromol. 49, 504–512 (2011)

    Article  CAS  Google Scholar 

  37. M. Sugimoto, M. Morimotob, H. Sashiwab, H. Saimotob, Y. Shigemasabl, Carbohydrate polymers preparation and characterization of water-soluble chitin and chitosan derivatives. Carbohydr. Polym. 36, 49–59 (1998)

    Article  CAS  Google Scholar 

  38. P.P. Dhawade, R.N. Jagtap, Characterization of the glass transition temperature of chitosan and its oligomers by temperature modulated differential scanning calorimetry. Adv. Appl. Sci. Res. 3, 1372–1382 (2012)

    CAS  Google Scholar 

  39. A. Gupta, V.S. Chauhan, N. Sankararamakrishnan, Preparation and evaluation of iron–chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater. Water Res. 43, 3862–3870 (2009)

    Article  CAS  Google Scholar 

  40. A. Zayed et al., Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydr. Polym. 91, 322–332 (2013)

    Article  Google Scholar 

  41. D. Depan, B. Girase, J.S. Shah, R.D.K. Misra, Structure process and property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds. Acta Biomater. 7, 3432–3445 (2011)

    Article  CAS  Google Scholar 

  42. L. Fan, C. Luo, M. Sun, H. Qiu, X. Li, Synthesis of magnetic β-cyclodextrin–chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal. Colloids Surf. B 103, 601–607 (2013)

    Article  CAS  Google Scholar 

  43. L. Chen et al., Physicochemical and engineering aspects studies and comparison of the liquid adsorption and surface properties of α-, β- and γ-cyclodextrins by FTIR and capillary rise method. Colloids Surf. A 411, 69–73 (2012)

    Article  CAS  Google Scholar 

  44. S. Ghosh, A.Z.M. Badruddoza, M.S. Uddin, K. Hidajat, Adsorption of chiral aromatic amino acids onto carboxymethyl-β-cyclodextrin bonded Fe3O4/SiO2 core–shell nanoparticles. J. Colloid Interface Sci. 354, 483–492 (2011)

    Article  CAS  Google Scholar 

  45. H. Cao, J. He, L. Deng, X. Gao, Fabrication of cyclodextrin-functionalized superparamagnetic Fe3O4/amino-silane core–shell nanoparticles via layer-by-layer method. Appl. Surf. Sci. 255, 7974–7980 (2009)

    Article  CAS  Google Scholar 

  46. M.F. Canbolat, A. Celebioglu, T. Uyar, Biointerfaces drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers. Colloids Surf. B 115, 15–21 (2014)

    Article  CAS  Google Scholar 

  47. H. Wang et al., Chemical β-cyclodextrin/Fe3O4 hybrid magnetic nano-composite modified glassy carbon electrode for tryptophan sensing. Sens. Actuators B 163, 171–178 (2012)

    Article  CAS  Google Scholar 

  48. X.I.N. Qu, A. Wirse, Structural change and swelling Mechanism of pH-sensitive hydrogels based on chitosan and D, L-lactic acid. J. Appl. Polym. Sci. 74, 3186–3192 (1999)

    Article  CAS  Google Scholar 

  49. A. Albertsson, X.I.N. Qu, A. Wirse, Synthesis and characterization of pH-sensitive hydrogels based on chitosan and D, L-lactic acid. J. Appl. Polym. Sci. 74, 3193–3202 (1999)

    Article  Google Scholar 

  50. L. Cui, Z. Zhang, E. Sun, X. Jia, Effect of β-cyclodextrin complexation on solubility and enzymatic conversion of naringin. Int. J. Mol. Sci. 3, 14251–14261 (2012)

    Article  Google Scholar 

  51. J. Li, B. Chen, X. Wang, S. Hong, Preparation and characterization of inclusion complexes formed by biodegradable poly(ε-caprolactone)–poly(tetrahydrofuran)–poly(ε-caprolactone) triblock copolymer and cyclodextrins. Polymer 45, 1777–1785 (2004)

    Article  CAS  Google Scholar 

  52. N. Tabary, M.J. Garcia-fernandez, F. Danède, M. Descamps, B. Martel, Determination of the glass transition temperature of cyclodextrin polymers. Carbohydr. Polym. 148, 172–180 (2016)

    Article  CAS  Google Scholar 

  53. K. Sakurai, T. Maegawa, T. Takahashi, Glass transition temperature of chitosan and miscibility of chitosan/poly (N-vinyl pyrrolidone) blends. Polymer 41, 7051–7056 (2000)

    Article  CAS  Google Scholar 

  54. E. Demirbas, M. Kobya, E. Senturk, T. Ozkan, Adsorption kinetics for the removal of chromium (VI) from aqueous solutions on the activated carbons prepared from agricultural wastes. Water SA 30, 533–540 (2004)

    Article  CAS  Google Scholar 

  55. M. Kobya, E. Demirbas, Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour. Technol. 96, 1518–1521 (2005)

    Article  CAS  Google Scholar 

  56. G. Karthikeyan, N.M. Andal, K. Anbalagan, Adsorption studies of iron (III) on chitin. J. Chem. Sci. 117, 663–672 (2005)

    Article  CAS  Google Scholar 

  57. Z. Aksu, E. Balibek, Chromium (VI) biosorption by dried Rhizopus arrhizus: effect of salt (NaCl) concentration on equilibrium and kinetic parameters. J. Hazard. Mater. 145, 210–220 (2007)

    Article  CAS  Google Scholar 

  58. P. Baskaralingam, M. Pulikesi, V. Ramamurthi, S. Sivanesan, Modified hectorites and adsorption studies of a reactive dye. Appl. Clay Sci. 37, 207–214 (2007)

    Article  CAS  Google Scholar 

  59. P. Baskaralingam, M. Pulikesi, D. Elango, V. Ramamurthi, S. Sivanesan, Adsorption of acid dye onto organobentonite. J. Hazard. Mater. 128, 138–144 (2006)

    Article  CAS  Google Scholar 

  60. H.C. Zhao, Adsorption study for removal of Congo red anionic dye using organo-attapulgite. J. Adsorpt. 15, 381–389 (2009)

    Article  Google Scholar 

  61. A.K.Z. Bouberka, F.S.M. Kameche, Z. Derriche, Adsorption study of an industrial dye by an organic clay. J. Adsorpt. 13, 149–158 (2007)

    Article  Google Scholar 

  62. G. Crini, Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer. Dyes Pigm. 77, 415–426 (2008)

    Article  CAS  Google Scholar 

  63. Y.S. Ho, G. Mckay, Pseudo-second order model for sorption processes. Process Biochem. 34, 451–465 (1999)

    Article  CAS  Google Scholar 

  64. L. Li et al., Adsorbent for chromium removal based on graphene oxide functionalized with magnetic cyclodextrin–chitosan. Colloids Surf. B 107, 76–83 (2013)

    Article  CAS  Google Scholar 

  65. G. Crini, H.N. Peindy, F. Gimbert, C. Robert, Removal of CI basic green 4 (Malachite green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies. Sep. Purif. Technol. 53, 97–110 (2007)

    Article  CAS  Google Scholar 

  66. Y. Feng, J. Gong, G. Zeng, Q. Niu, H. Zhang, Adsorption of Cd(II) and Zn(II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chem. Eng. J. 162, 487–494 (2010)

    Article  CAS  Google Scholar 

  67. Y. Zhou, C. Branford-white, H. Nie, L. Zhu, Biointerfaces adsorption mechanism of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid. Colloids Surf. B 74, 244–252 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsiepe, J.T., Mamba, B.B., Inamuddin et al. Fe3O4–β-cyclodextrin–Chitosan Bionanocomposite for Arsenic Removal from Aqueous Solution. J Inorg Organomet Polym 28, 467–480 (2018). https://doi.org/10.1007/s10904-017-0741-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0741-3

Keywords

Navigation