Skip to main content
Log in

Desorption technologies for remediation of cesium-contaminated soils: a short review

  • Review paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

This review summarizes the mechanisms for desorbing and extracting cesium (Cs+) from clay minerals and soil. Most techniques use ion exchange with acids, cations, polymers, and surfactants. Some improve desorption of Cs+ from clay minerals, while surfactants and polymers expand the interlayer. Mixtures of acids/polymers, acids/surfactants, cations/polymers, and cations/surfactants are therefore more effective agents for desorption of Cs+ from clay minerals. Hydrothermal treatment plays a role similar to that of polymers and surfactants in expanding the interlayer of clay minerals. The primary desorption mechanism expands the interlayer and desorbs Cs+, but multiple sequential extractions based on these techniques can more effectively desorb Cs+ from clay minerals and field-contaminated soils. Desorption techniques for Cs+ based on multiple sequential extractions can reportedly achieve an efficiency greater than 90%, and such approaches are likely to be important technologies for remediation of Cs+-contaminated soils and industrial accident sites, as well as the dismantling of nuclear power plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bond, A., Palerm, J., & Haigh, P. (2004). Public participation in EIA of nuclear power plant decommissioning projects: A case study analysis. Environmental Impact Assessment Review, 24, 617–641.

    Article  Google Scholar 

  • Bouzidi, A., Souahi, F., & Hanini, S. (2010). Sorption behavior of cesium on Ain Oussera soil under different physicochemical conditions. Journal of Hazardous Materials, 184, 640–646.

    Article  CAS  Google Scholar 

  • Cornell, R. M. (1993). Adsorption of cesium on minerals: A review. Journal of Radioanalytical and Nuclear Chemistry-Articles, 171, 483–500.

    Article  CAS  Google Scholar 

  • Dermont, G., Bergeron, M., Mercier, G., & Richer-Laflèche, M. (2008). Soil washing for metal removal: A review of physical/chemical technologies and field applications. Journal of Hazardous Materials, 152, 1–31.

    Article  CAS  Google Scholar 

  • Djedidi, S., Kojima, K., Yamaya, H., Ohkama-Ohtsu, N., Bellingrath-Kimura, S. D., Watanabe, I., et al. (2014). Stable cesium uptake and accumulation capacities of five plant species as influenced by bacterial inoculation and cesium distribution in the soil. Journal of Plant Research, 127, 585–597.

    Article  CAS  Google Scholar 

  • Endo, S., Kimura, S., Takatsuji, T., Nanasawa, K., Imanaka, T., & Shizuma, K. (2012). Measurement of soil contamination by radionuclides due to the Fukushima Dai-ichi Nuclear Power Plant accident and associated estimated cumulative external dose estimation. Journal of Environmental Radioactivity, 111, 18–27.

    Article  CAS  Google Scholar 

  • Fujita, T., Wang, L. P., Yabui, K., Dodbiba, G., Okaya, K., Matsuo, S., et al. (2013). Adsorption of cesium ion on various clay minerals and remediation of cesium contaminated soil in Japan. Resources Processing, 60, 13–17.

    Article  Google Scholar 

  • Fukushi, K., Sakai, H., Itono, T., Tamura, A., & Arai, S. (2014). Desorption of intrinsic cesium from smectite: Inhibitive effects of clay particle organization on cesium desorption. Environmental Science and Technology, 48, 10743–10749.

    Article  CAS  Google Scholar 

  • Fuller, A. J., Shaw, S., Ward, M. B., Haigh, S. J., Mosselmans, J. F. W., Peacock, C. L., et al. (2015). Caesium incorporation and retention in illite interlayers. Applied Clay Science, 108, 128–134.

    Article  CAS  Google Scholar 

  • Hirose, M., Kikawada, Y., Tsukamoto, A., Oi, T., Honda, T., Hirose, K., et al. (2015). Chemical forms of radioactive Cs in soils originated from Fukushima Dai-ichi nuclear power plant accident studied by extraction experiments. Journal of Radioanalytical and Nuclear Chemistry, 303, 1357–1359.

    Article  CAS  Google Scholar 

  • Kim, G.-N., Jung, Y.-H., Lee, J.-J., Moon, J.-K., & Jung, C.-H. (2008). An analysis of a flushing effect on the electrokinetic-flushing removal of cobalt and cesium from a soil around decommissioning site. Separation and Purification Technology, 63, 116–121.

    Article  CAS  Google Scholar 

  • Kim, G.-N., Kim, S.-S., Park, U.-R., & Moon, J.-K. (2015). Decontamination of soil contaminated with cesium using electrokinetic-electrodialytic method. Electrochimica Acta, 181, 233–237.

    Article  CAS  Google Scholar 

  • Kim, Y., Kirkpatrick, R. J., & Cygan, R. T. (1996). Cs-133 NMR study of cesium on the surfaces of kaolinite and illite. Geochimica et Cosmochimica Acta, 60, 4059–4074.

    Article  CAS  Google Scholar 

  • Korobova, E., Ermakov, A., & Linnik, V. (1998). 137Cs and 90Sr mobility in soils and transfer in soil–plant systems in the Novozybkov district affected by the Chernobyl accident. Applied Geochemistry, 13, 803–814.

    Article  CAS  Google Scholar 

  • Lee, M. E., Jeon, E.-K., Tsang, D. C., & Baek, K. (2018). Simultaneous application of oxalic acid and dithionite for enhanced extraction of arsenic bound to amorphous and crystalline iron oxides. Journal of Hazardous Materials, 354, 91–98.

    Article  CAS  Google Scholar 

  • Lee, J., Park, S. M., Jeon, E. K., & Baek, K. (2017). Selective and irreversible adsorption mechanism of cesium on illite. Applied Geochemistry, 85, 188–193.

    Article  CAS  Google Scholar 

  • Liu, C. X., Zachara, J. M., Smith, S. C., McKinley, J. P., & Ainsworth, C. C. (2003). Desorption kinetics of radiocesium from subsurface sediments at Hanford Site, USA. Geochimica et Cosmochimica Acta, 67, 2893–2912.

    Article  CAS  Google Scholar 

  • Lu, N., Mason, C. F., & Turney, W. R. (1996). Characterization and immobilization of cesium-137 in soil at Los Alamos National Laboratory. Los Alamos: Los Alamos National Lab.

    Google Scholar 

  • Mallampati, S. R., Mitoma, Y., Okuda, T., Sakita, S., & Kakeda, M. (2012). High immobilization of soil cesium using ball milling with nano-metallic Ca/CaO/NaH2PO4: Implications for the remediation of radioactive soils. Environmental Chemistry Letters, 10, 201–207.

    Article  CAS  Google Scholar 

  • McKinley, J. P., Zachara, J. M., Heald, S. M., Dohnalkova, A., Newville, M. G., & Sutton, S. R. (2004). Microscale distribution of cesium sorbed to biotite and muscovite. Environmental Science and Technology, 38, 1017–1023.

    Article  CAS  Google Scholar 

  • Miranda-Trevino, J. C., & Coles, C. A. (2003). Kaolinite properties, structure and influence of metal retention on pH. Applied Clay Science, 23, 133–139.

    Article  CAS  Google Scholar 

  • Mukai, H., Hirose, A., Motai, S., Kikuchi, R., Tanoi, K., Nakanishi, T. M., et al. (2016). Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima. Scientific Reports, 6, 21543.

    Article  CAS  Google Scholar 

  • Murota, K., Saito, T., & Tanaka, S. (2016). Desorption kinetics of cesium from Fukushima soils. Journal of Environmental Radioactivity, 153, 134–140.

    Article  CAS  Google Scholar 

  • Nakao, A., Thiry, Y., Funakawa, S., & Kosaki, T. (2008). Characterization of the frayed edge site of micaceous minerals in soil clays influenced by different pedogenetic conditions in Japan and northern Thailand. Soil Science and Plant Nutrition, 54, 479–489.

    Article  CAS  Google Scholar 

  • Ndlovu, B., Farrokhpay, S., & Bradshaw, D. (2013). The effect of phyllosilicate minerals on mineral processing industry. International Journal of Mineral Processing, 125, 149–156.

    Article  CAS  Google Scholar 

  • Parajuli, D., Takahashi, A., Tanaka, H., Sato, M., Fukuda, S., Kamimura, R., et al. (2015). Variation in available cesium concentration with parameters during temperature induced extraction of cesium from soil. Journal of Environmental Radioactivity, 140, 78–83.

    Article  CAS  Google Scholar 

  • Park, S.-M., Alessi, D. S., & Baek, K. (2019a). Selective adsorption and irreversible fixation behavior of cesium onto 2: 1 layered clay mineral: A mini review. Journal of Hazardous Materials, 369, 569–576.

    Article  CAS  Google Scholar 

  • Park, C. W., Kim, B. H., Yang, H. M., Seo, B. K., & Lee, K. W. (2017a). Enhanced desorption of Cs from clays by a polymeric cation-exchange agent. Journal of Hazardous Materials, 327, 127–134.

    Article  CAS  Google Scholar 

  • Park, C. W., Kim, B. H., Yang, H. M., Seo, B. K., Moon, J. K., & Lee, K. W. (2017b). Removal of cesium ions from clays by cationic surfactant intercalation. Chemosphere, 168, 1068–1074.

    Article  CAS  Google Scholar 

  • Park, S.-M., Lee, J., Jeon, E.-K., Kang, S., Alam, M. S., Tsang, D. C., et al. (2019b). Adsorption characteristics of cesium on the clay minerals: Structural change under wetting and drying condition. Geoderma, 340, 49–54.

    Article  CAS  Google Scholar 

  • Park, S. M., Yang, J. S., Tsang, D. C. W., Alessi, D. S., & Baek, K. (2019c). Enhanced irreversible fixation of cesium by wetting and drying cycles in soil. Environmental Geochemistry and Health, 41, 149–157.

    Article  CAS  Google Scholar 

  • Pöllänen, R., Valkama, I., & Toivonen, H. (1997). Transport of radioactive particles from the Chernobyl accident. Atmospheric Environment, 31, 3575–3590.

    Article  Google Scholar 

  • Rigol, A., Vidal, M., & Rauret, G. (1999). Effect of the ionic status and drying on radiocesium adsorption and desorption in organic soils. Environmental Science and Technology, 33, 3788–3794.

    Article  CAS  Google Scholar 

  • Sato, K., Fujimoto, K., Dai, W., & Hunger, M. (2013). Molecular mechanism of heavily adhesive Cs: Why radioactive Cs is not decontaminated from soil. Journal of Physical Chemistry C, 117, 14075–14080.

    Article  CAS  Google Scholar 

  • Sawhney, B. L. (1972). Selective sorption and fixation of cations by Clay-minerals: Review. Clays and Clay Minerals, 20, 93–100.

    Article  CAS  Google Scholar 

  • Sharma, S., Singh, B., & Manchanda, V. (2015). Phytoremediation: Role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environmental Science and Pollution Research, 22, 946–962.

    Article  CAS  Google Scholar 

  • Steinhauser, G., Brandl, A., & Johnson, T. E. (2014). Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts. Science of the Total Environment, 470, 800–817.

    Article  CAS  Google Scholar 

  • Tamura, K., Sato, H., & Yamagishi, A. (2015). Desorption of Cs+ ions from a vermiculite by exchanging with Mg2+ ions: effects of Cs+-capturing ligand. Journal of Radioanalytical and Nuclear Chemistry, 303, 2205–2210.

    CAS  Google Scholar 

  • Tateda, Y., Tsumune, D., & Tsubono, T. (2013). Simulation of radioactive cesium transfer in the southern Fukushima coastal biota using a dynamic food chain transfer model. Journal of Environmental Radioactivity, 124, 1–12.

    Article  CAS  Google Scholar 

  • Wang, T. H., Li, M. H., Wei, Y. Y., & Teng, S. P. (2010). Desorption of cesium from granite under various aqueous conditions. Applied Radiation and Isotopes, 68, 2140–2146.

    Article  CAS  Google Scholar 

  • Willms, C., Li, Z. H., Allen, L., & Evans, C. V. (2004). Desorption of cesium from kaolinite and illite using alkylammonium salts. Applied Clay Science, 25, 125–133.

    Article  CAS  Google Scholar 

  • Yin, X. B., Horiuchi, N., Utsunomiya, S., Ochiai, A., Takahashi, H., Inaba, Y., et al. (2018). Effective and efficient desorption of Cs from hydrothermal-treated clay minerals for the decontamination of Fukushima radioactive soil. Chemical Engineering Journal, 333, 392–401.

    Article  CAS  Google Scholar 

  • Yin, X., Wang, X. P., Wu, H., Ohnuki, T., & Takeshita, K. (2017). Enhanced desorption of cesium from collapsed interlayer regions in vermiculite by hydrothermal treatment with divalent cations. Journal of Hazardous Materials, 326, 47–53.

    Article  CAS  Google Scholar 

  • Yoo, J.-C., Beiyuan, J., Wang, L., Tsang, D. C., Baek, K., Bolan, N. S., et al. (2018). A combination of ferric nitrate/EDDS-enhanced washing and sludge-derived biochar stabilization of metal-contaminated soils. Science of the Total Environment, 616, 572–582.

    Article  CAS  Google Scholar 

  • Yoo, J.-C., Lee, C.-D., Yang, J.-S., & Baek, K. (2013). Extraction characteristics of heavy metals from marine sediments. Chemical Engineering Journal, 228, 688–699.

    Article  CAS  Google Scholar 

  • Yoshida, Y., Sekiya, K., Nomura, N., Mishima, F., Akiyama, Y., & Nishijima, S. (2015). Study on volume reduction of contaminated soil by radioactive cesium using magnetic separation. IEEE Transactions on Applied Superconductivity, 25, 1–5.

    Google Scholar 

  • Young, D. A., & Smith, D. E. (2000). Simulations of clay mineral swelling and hydration: Dependence upon interlayer ion size and charge. Journal of Physical Chemistry B, 104, 9163–9170.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This subject is supported by the Korea Ministry of Environment as “The SEM (Subsurface Environment Management) Projects; G232019011571” and partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No: 2019R1A4A1027795).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kitae Baek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, SM., Kim, JG., Kim, HB. et al. Desorption technologies for remediation of cesium-contaminated soils: a short review. Environ Geochem Health 43, 3263–3272 (2021). https://doi.org/10.1007/s10653-020-00667-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00667-3

Keywords

Navigation