Skip to main content

Advertisement

Log in

Accumulation of copper and cadmium in soil–rice systems in terrace and lowland paddies of the Red River basin, Vietnam: the possible regulatory role of silicon

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Rice production in floodplain deltas is currently vulnerable to climate change and contamination from anthropogenic activities. The relocation of rice production to upland regions could be an option for increasing the sustainability of rice production. Our study evaluated the spatial patterning of heavy metals, i.e., copper (Cu) and cadmium (Cd), in rice along a topogradient from terrace to lowland areas in the Red River basin. The dataset obtained from the analysis of 61 farm sites throughout the whole basin indicated a large discrepancy in the Cu and Cd contents in rice grains from terrace and lowland paddies. While Cu and Cd were not found in most of the rice grain samples from the terrace paddies, the median Cu and Cd contents of the lowland paddy rice were 1.895 and 0.033 mg kg−1, respectively. Assessing the relationship of Cu and Cd in the soil–rice system to soil properties revealed possible correlations between soil available silicon (Si) and the Cu and Cd contents in rice grain. The enrichment of Si in rice plants likely reduces the translocation of Cu and Cd from soil to grain. Therefore, management of the Si supply, particularly in lowland paddies, should be highlighted as a way to reduce dietary intake of Cu and Cd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bangalore, M., Smith, A., & Veldkamp, T. (2019). Exposure to floods, climate change, and poverty in Vietnam. Economics of Disasters and Climate Change, 3(1), 79–99.

    Google Scholar 

  • Caporale, A. G., & Violante, A. (2016). Chemical processes affecting the mobility of heavy metals and metalloids in soil environments. Current Pollution Reports, 2(1), 15–27.

    CAS  Google Scholar 

  • Carey, M., Meharg, C., Williams, P., Marwa, E., Jiujin, X., Farias, J. G., et al. (2019). Global sourcing of low-inorganic arsenic rice grain. Exposure and Health. https://doi.org/10.1007/s12403-019-00330-y.

    Article  Google Scholar 

  • Commission Regulation Directive EC. (2001). Commission Regulation (EC) No. 466. Official Journal of the European Communities.

  • de Livera, J., McLaughlin, M. J., Hettiarachchi, G. M., Kirby, J. K., & Beak, D. G. (2011). Cadmium solubility in paddy soils: Effects of soil oxidation, metal sulfides and competitive ions. Science of the Total Environment, 409(8), 1489–1497.

    Google Scholar 

  • Delplace, G., Schreck, E., Pokrovsky, O. S., Zouiten, C., Blondet, I., Darrozes, J., et al. (2020). Accumulation of heavy metals in phytoliths from reeds growing on mining environments in Southern Europe. Science of the Total Environment, 712, 135595.

    CAS  Google Scholar 

  • DeMaster, D. J. (1981). The supply and accumulation of silica in the marine environment. Geochimica et Cosmochimica Acta, 45(10), 1715–1732.

    CAS  Google Scholar 

  • Đukić-Ćosić, D., Baralić, K., Javorac, D., Djordjevic, A. B., & Bulat, Z. (2020). An overview of molecular mechanisms in cadmium toxicity. Current Opinion in Toxicology, 19, 56–62.

    Google Scholar 

  • Earth Security Group. (2019). Financing sustainable rice for a secure future. ESG's new report.

  • Etesami, H., & Jeong, B. R. (2018). Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicology and Environmental Safety, 147, 881–896.

    CAS  Google Scholar 

  • Fulda, B., Voegelin, A., & Kretzschmar, R. (2013). Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper. Environmental Science & Technology, 47(22), 12775–12783.

    CAS  Google Scholar 

  • Gu, H. H., Zhan, S. S., Wang, S. Z., Tang, Y. T., Chaney, R. L., Fang, X. H., et al. (2012). Silicon-mediated amelioration of zinc toxicity in rice (Oryza sativa L.) seedlings. Plant and Soil, 350(1), 193–204.

    CAS  Google Scholar 

  • Guerriero, G., Hausman, J. F., & Legay, S. (2016). Silicon and the plant extracellular matrix. Frontiers in Plant Science, 7, 463.

    Google Scholar 

  • He, C., Wang, L., Liu, J., Liu, X., Li, X., Ma, J., et al. (2013). Evidence for ‘silicon’ within the cell walls of suspension-cultured rice cells. New Phytologist, 200(3), 700–709.

    CAS  Google Scholar 

  • Huang, X. Y., Deng, F., Yamaji, N., Pinson, S. R. M., Fujii-Kashino, M., Danku, J., et al. (2016). A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain. Nature Communications, 7(1), 12138.

    CAS  Google Scholar 

  • Jackson, M. L., Lim, C. H., & Zelazny, L. W. (1986). Oxides, hydroxides, and aluminosilicates. In A. Klute (Ed.), Methods of soil analysis. Part 1. Agronomy (Vol. 9, 101–150), 2nd ed.

  • Jones, B. G., Alyazichi, Y. M., Low, C., Goodfellow, A., Chenhall, B. E., & Morrison, R. J. (2019). Distribution and sources of trace element pollutants in the sediments of the industrialised Port Kembla Harbour, New South Wales, Australia. Environmental Earth Sciences, 78, 357.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Kauwenbergh, S. J. V. (1997). Cadmium and other minor elements in world resources of phosphate rock: Paper pres. to the Fertiliser Society in London, on the 9th October 1997. Peterborough: Fertiliser Society.

    Google Scholar 

  • Khan, E., & Gupta, M. (2018). Arsenic–silicon priming of rice (Oryza sativa L.) seeds influence mineral nutrient uptake and biochemical responses through modulation of Lsi-1, Lsi-2, Lsi-6 and nutrient transporter genes. Scientific Reports, 8(1), 10301.

    Google Scholar 

  • Kögel-Knabner, I., Amelung, W., Cao, Z., Fiedler, S., Frenzel, P., Jahn, R., et al. (2010). Biogeochemistry of paddy soils. Geoderma, 157(1–2), 1–14.

    Google Scholar 

  • Li, P., Wang, X. X., Zhang, T. L., Zhou, D. M., & He, Y. Q. (2009). Distribution and accumulation of copper and cadmium in soil–rice system as affected by soil amendments. Water, Air, and Soil Pollution, 196(1), 29–40.

    CAS  Google Scholar 

  • Li, X., Zhang, J., Gong, Y., Liu, Q., Yang, S., Ma, J., et al. (2020). Status of copper accumulation in agricultural soils across China (1985–2016). Chemosphere, 244, 125516.

    CAS  Google Scholar 

  • Liang, Y., Sun, W., Zhu, Y. G., & Christie, P. (2007). Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environmental Pollution, 147(2), 422–428.

    CAS  Google Scholar 

  • Ma, J. F., Tamai, K., Yamaji, N., Mitani, N., Konishi, S., Katsuhara, M., et al. (2006). A silicon transporter in rice. Nature, 440(7084), 688–691.

    CAS  Google Scholar 

  • Ma, J. F., Yamaji, N., Mitani, N., Tamai, K., Konishi, S., Fujiwara, T., et al. (2007). An efflux transporter of silicon in rice. Nature, 448, 209.

    CAS  Google Scholar 

  • Mishra, P., & Mishra, M. (2018). Risk assessment of heavy metal contamination in paddy soil, plants, and grains (Oryza sativa L). In M. Z. Hashmi & A. Varma (Eds.), Environmental Pollution of Paddy Soils (pp. 165–178). Cham: Springer International Publishing.

    Google Scholar 

  • Mitani, N., & Ma, J. F. (2005). Uptake system of silicon in different plant species. Journal of Experimental Botany, 56(414), 1255–1261.

    CAS  Google Scholar 

  • Mortlock, R. A., & Froelich, P. N. (1989). A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Research, 36, 1415–1426.

    CAS  Google Scholar 

  • Neumann, J. E., Emanuel, K. A., Ravela, S., Ludwig, L. C., & Verly, C. (2015). Risks of coastal storm surge and the effect of sea level rise in the Red River delta, Vietnam. Sustainability, 7(6), 6553–6572.

    Google Scholar 

  • Nguyen, M. N., Dultz, S., Meharg, A., Pham, Q. V., Hoang, A. N., Dam, T. T. N., et al. (2019a). Phytolith content in Vietnamese paddy soils in relation to soil properties. Geoderma, 333, 200–213.

    CAS  Google Scholar 

  • Nguyen, M. N., Dultz, S., Picardal, F., Bui, A. T. K., Pham, Q. V., Dam, T. T. N., et al. (2016). Simulation of silicon leaching from flooded rice paddy soils in the Red River Delta, Vietnam. Chemosphere, 145, 450–456.

    CAS  Google Scholar 

  • Nguyen, M. N., Picardal, F., Dultz, S., Dam, T. T. N., Nguyen, A. V., & Nguyen, K. M. (2017). Silicic acid as a dispersibility enhancer in a Fe-oxide-rich kaolinitic soil clay. Geoderma, 286, 8–14.

    CAS  Google Scholar 

  • Nguyen, N. M., Dultz, S., Kasbohm, J., & Le, D. (2009). Clay dispersion and its relation to surface charge in a paddy soil of the Red River Delta, Vietnam. Journal of Plant Nutrition and Soil Science, 172(4), 477–486.

    CAS  Google Scholar 

  • Nguyen, N. M., Dultz, S., Picardal, F., Bui, T. K. A., Pham, Q. V., & Schieber, J. (2015). Release of potassium accompanying the dissolution of rice straw phytolith. Chemosphere, 119, 371–376.

    CAS  Google Scholar 

  • Nguyen, T. N., Nguyen, M. N., McNamara, M., Dultz, S., Meharg, A., & Nguyen, V. T. (2019b). Encapsulation of lead in rice phytoliths as a possible pollutant source in paddy soils. Environmental and Experimental Botany, 162, 58–66.

    CAS  Google Scholar 

  • Parr, J. F., & Sullivan, L. A. (2005). Soil carbon sequestration in phytoliths. Soil Biology and Biochemistry, 37, 117–124.

    CAS  Google Scholar 

  • Pizarro, C., Fabris, J. D., Stucki, J. W., & Garg, V. K. (2008). Ammonium oxalate and citrate-ascorbate as selective chemical agents for the mineralogical analysis of clay fractions of an ultisoland andisols from southern Chile. Journal of the Chilean Chemical Society, 53(3), 1581–1584.

    CAS  Google Scholar 

  • QCVN. (2015). National technical regulation on the allowable limits of heavy metals in the soils. In Vietnamese Government (Ed.), 03-MT:2015/BTNMT. Vietnam: Ministry of Natural Resources and Environment.

    Google Scholar 

  • Qin, F., Shan, X. Q., & Wei, B. (2004). Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Chemosphere, 57(4), 253–263.

    CAS  Google Scholar 

  • Rieuwerts, J. S., Thornton, I., Farago, M. E., & Ashmore, M. R. (1998). Factors influencing metal bioavailability in soils: Preliminary investigations for the development of a critical loads approach for metals. Chemical Speciation & Bioavailability, 10(2), 61–75.

    CAS  Google Scholar 

  • Shim, J., Shea, P. J., & Oh, B. T. (2014). Stabilization of heavy metals in mining site soil with silica extracted from corn cob. Water, Air, & Soil Pollution, 225(10), 2152.

    Google Scholar 

  • SOP. (2000). Standard operation procedures, No. SOP-2000-I-001.1. Miami: Florida International University, Southeast Environmental Research Center, Environmental Analysis Research Laboratory.

    Google Scholar 

  • Taylor, A. A., Tsuji, J. S., Garry, M. R., McArdle, M. E., Goodfellow, W. L., Adams, W. J., et al. (2020). Critical review of exposure and effects: Implications for setting regulatory health criteria for ingested copper. Environmental Management, 65(1), 131–159.

    Google Scholar 

  • Tran, T. T. T., Nguyen, T. T., Nguyen, V. T., Huynh, H. T. H., Nguyen, T. T. H., & Nguyen, M. N. (2019). Copper encapsulated in grass-derived phytoliths: Characterization, dissolution properties and the relation of content to soil properties. Journal of Environmental Management, 249, 109423.

    CAS  Google Scholar 

  • Trinh, Q. H., & Wada, S. I. (2004). Cadmium status of some soils and sewage sludge in Red river delta of Vietnam. Journal of the Faculty of Agriculture, Kyushu University, 49, 149–155.

    Google Scholar 

  • Trinh, T. K., Nguyen, T. T. H., Nguyen, T. N., Wu, T. Y., Meharg, A. A., & Nguyen, M. N. (2017). Characterization and dissolution properties of phytolith occluded phosphorus in rice straw. Soil and Tillage Research, 171, 19–24.

    Google Scholar 

  • Tubana, B. S., Babu, T., & Datnoff, L. E. (2016). A review of silicon in soils and plants and its role in US agriculture: History and future perspectives. Soil Science, 181(9/10), 393–411.

    CAS  Google Scholar 

  • WHO. (1998). Copper (EHC no. 200). Geneva: WHO.

    Google Scholar 

  • Xu, R. K. (2013). Interaction between heavy metals and variable charge surfaces. In J. Xu & D. L. Sparks (Eds.), Molecular environmental soil science (pp. 193–228). Dordrecht: Springer Netherlands.

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Institute of Environmental Technology, Vietnam Academy of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh N. Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table A1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bui, A.T.K., Duong, L.T. & Nguyen, M.N. Accumulation of copper and cadmium in soil–rice systems in terrace and lowland paddies of the Red River basin, Vietnam: the possible regulatory role of silicon. Environ Geochem Health 42, 3753–3764 (2020). https://doi.org/10.1007/s10653-020-00626-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00626-y

Keywords

Navigation