Skip to main content

Advertisement

Log in

Trace metal pollution and ecological risk assessment in agricultural soil in Dexing Pb/Zn mining area, China

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Surface agricultural soil samples obtained from Dexing Pb/Zn mining area in Jiangxi province were analyzed for trace metals to assess their pollution status and potential ecological risk. The spatial distributions and the major trace metals pollution sources were described and identified with the combination of chemical measures and geographic information systems technology. The level of pollution in seven metals is decreasing in the following order: zinc (Zn 128.9 mg/kg) > chromium (Cr 64.1 mg/kg) > lead (Pb 58.4 mg/kg) > arsenic (As 45.3 mg/kg) > copper (Cu 41.9 mg/kg) > nickel (Ni 31.3 mg/kg) > cadmium (Cd 1.5 mg/kg). Trace metal spatial distribution maps established by geographic information system techniques displayed two high-pollution zones around mining sites in the study area. Multivariate statistical analyses were also applied, and the results demonstrated that Cd, As, Pb, Cu and Zn in the soils originated from mining activities, whereas Cr and Ni primarily originated from natural sources. The values of pollution index ranged from 4.79 to 71.59, and the values of modified pollution index ranged from 1.98 to 24.69. Moreover, the potential ecological risk values ranged from 264.0 to 3263.5, which indicated considerable ecological risk to very high ecological risk. The potential ecological risk values and other soil contamination indices showed similar patterns that the high-risk areas were around Dexing Pb/Zn mining site. The surface agricultural soil in study area is heavily to extremely polluted , with Cd that made the most dominant contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abrahim, G. M., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136, 227–238.

    Article  CAS  Google Scholar 

  • Aslan, A. (2009). Determination of heavy metal toxicity of finished leather solid waste. Bulletin of Environment Contamination and Toxicology, 82, 633–638.

    Article  CAS  Google Scholar 

  • Boteva, S., Radeva, G., Traykov, I., & Kenarova, A. (2016). Effects of long-term radionuclide and heavy metal contamination on the activity of microbial communities, inhabiting uranium mining impacted soils. Environmental Science and Pollution Research International, 23, 5644–5653.

    Article  CAS  Google Scholar 

  • Brady, J. P., Ayoko, G. A., Martens, W. N., & Goonetilleke, A. (2015). Development of a hybrid pollution index for trace metals in marine and estuarine sediments. Environmental Monitoring and Assessment, 187, 306–319.

    Article  Google Scholar 

  • China National Environmental Monitoring Centre. (1990). Chinese soil element background value. Beijing: China Environmental Science Press.

    Google Scholar 

  • Du, P., Xie, Y. F., Wang, S. J., Zhao, H. H., Zhang, Z., Wu, B., et al. (2015). Potential sources of and ecological risks from heavy metals in agricultural soils, Daye City, China. Environmental Science and Pollution Research, 22, 3498–3507.

    Article  CAS  Google Scholar 

  • Duan, Q., Lee, J., Liu, Y., Chen, H., & Hu, H. (2016). Distribution of trace metal pollution in surface soil samples in China: A graphical review. Bulletin of Environment Contamination and Toxicology, 97, 303–309.

    Article  CAS  Google Scholar 

  • Fang, T., Liu, G., Zhou, C., & Lu, L. (2015). Lead in soil and agricultural products in the Huainan Coal Mining Area, Anhui, China: levels, distribution, and health implications. Environmental Monitoring and Assessment, 187, 152–161.

    Article  CAS  Google Scholar 

  • Guo, G., Yuan, T., Wang, W., Li, D., Cheng, J., Gao, Y., et al. (2011). Bioavailability, mobility, and toxicity of Cu in soils around the Dexing Cu mine in China. Environmental Geochemistry and Health, 33, 217–224.

    Article  CAS  Google Scholar 

  • Haris, H., Looi, L. J., Aris, A. Z., Mokhtar, N. F., Ayob, N. A. A., Yusoff, F. M., et al. (2017). Geo-accumulation index and contamination factors of heavy metals (Zn and Pb) in urban river sediment. Environmental Geochemistry and Health, 39(6), 1259–1271.

    Article  CAS  Google Scholar 

  • Hinojosa, M. B., Carreira, J. A., Garcia-Ruiz, R., & Dick, R. P. (2005). Microbial response to heavy metal-polluted soils: community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts. Journal of Environmental Quality, 34, 1789–1800.

    Article  CAS  Google Scholar 

  • Hofmann, J., Venohr, M., Behrendt, H., & Opitz, D. (2010). Integrated water resources management in central Asia: nutrient and heavy metal emissions and their relevance for the Kharaa River Basin, Mongolia. Water Science and Technology, 62, 353–363.

    Article  CAS  Google Scholar 

  • Ihedioha, J. N., Ukoha, P. O., & Ekere, N. R. (2017). Ecological and human health risk assessment of trace metal contamination in soil of a municipal solid waste dump in Uyo, Nigeria. Environmental Geochemistry and Health, 39, 497–515.

    Article  CAS  Google Scholar 

  • Jayawardena, U. A., Angunawela, P., Wickramasinghe, D. D., Ratnasooriya, W. D., & Udagama, P. V. (2017). Heavy metal-induced toxicity in the Indian green frog: Biochemical and histopathological alterations. Environmental Toxicology and Chemistry, 36, 2855–2867.

    Article  CAS  Google Scholar 

  • Kapusta, P., & Sobczyk, L. (2015). Effects of heavy metal pollution from mining and smelting on enchytraeid communities under different land management and soil conditions. Science of the Total Environment, 536, 517–526.

    Article  CAS  Google Scholar 

  • Kaur, R., & Rani, R. (2006). Spatial characterization and prioritization of heavy metal contaminated soil-water resources in peri-urban areas of National Capital Territory (NCT), Delhi. Environmental Monitoring and Assessment, 123, 233–247.

    Article  CAS  Google Scholar 

  • Kim, H. S., Kim, Y. J., & Seo, Y. R. (2015). An overview of carcinogenic heavy metal: Molecular toxicity mechanism and prevention. Journal of Cancer Prevention, 20, 232–240.

    Article  Google Scholar 

  • Kistemann, T., Dangendorf, F., & Schweikart, J. (2002). New perspectives on the use of Geographical Information Systems (GIS) in environmental health sciences. International Journal of Hygiene and Environmental Health, 205, 169–181.

    Article  Google Scholar 

  • Li, Z. Y., Ma, Z. W., Kuijp, T. J. V. D., Yuan, Z. W., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468, 843–853.

    Article  CAS  Google Scholar 

  • Li, J., Xie, Z. M., Xu, J. M., & Sun, Y. F. (2006). Risk assessment for safety of soils and vegetables around a lead/zinc mine. Environmental Geochemistry and Health, 28, 37–44.

    Article  CAS  Google Scholar 

  • Lim, S. R., & Schoenung, J. M. (2010). Human health and ecological toxicity potentials due to trace metal content in waste electronic devices with flat panel displays. Journal of Hazardous Materials, 177, 251–259.

    Article  CAS  Google Scholar 

  • Lopez, B. N., Man, Y. B., Zhao, Y. G., Zheng, J. S., Leung, A. O., Yao, J., et al. (2011). Major pollutants in soils of abandoned agricultural land contaminated by e-waste activities in Hong Kong. Archives of Environmental Contamination and Toxicology, 61, 101–114.

    Article  CAS  Google Scholar 

  • Loska, K., & Wiechuła, D. (2003). Application of principle component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemo, 51, 723–733.

    Article  CAS  Google Scholar 

  • Ma, R. M., Cai, C. F., Li, Z. X., Wang, J. G., Xiao, T. Q., Peng, G. Y., et al. (2015). Evaluation of soil aggregate microstructure and stability under wetting and drying cycles in two Ultisols using synchrotron-based X-ray micro-computed tomography. Soil & Tillage, 149, 1–11.

    Article  Google Scholar 

  • Mazurek, R., Kowalska, J., Gąsiorek, M., Zadrozny, P., & Józefowska, A. (2016). Assessment of trace metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere, 168, 839–850.

    Article  CAS  Google Scholar 

  • Motta, I. S., Volpato, G. T., Damasceno, D. C., Sinzato, Y. K., Vesentini, G., Rudge, C. V., et al. (2016). Contamination index. A novel parameter for metal and pesticide analyses in maternal blood and umbilical cord. Acta Cirurgica Brasileira, 31, 490–497.

    Article  Google Scholar 

  • Muller, A., & Geyer, G. (1969). Submicroscopic heavy metal localization in the prosecreta of the Paneth cells of the mouse. Gegenbaurs Morphologisches Jahrbuch, 113, 70–77.

    CAS  Google Scholar 

  • Nemerow, N. L. (1991). Stream, lake, estuary and ocean pollution. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Peng, H., Geng, W., Yong-quan, W., Mao-teng, L., Jun, X., & Long-jiang, Y. (2010). Effect of trace metal stress on emerging plants community constructions in wetland. Water Science and Technology, 62, 2459–2466.

    Article  CAS  Google Scholar 

  • Shafie, N. A., Aris, A. Z., Zakaria, M. P., Haris, H., Lim, W. Y., & Isa, N. M. (2013). Application of geoaccumulation index and enrichment factors on the assessment of heavy metal pollution in the sediments. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 48(2), 182–190.

    Article  CAS  Google Scholar 

  • Sun, C., Liu, J., Wang, Y., Sun, L., & Yu, H. (2013). Multivariate and geostatistical analyses of the spatial distribution and sources of trace metals in agricultural soil in Dehui, Northeast China. Chemosphere, 92, 517–523.

    Article  CAS  Google Scholar 

  • Sutherland, R. A. (2000). Bed sediment associated heavy metals in an urban stream, Oahu Hawaii. Environmental Geology, 39, 611–627.

    Article  CAS  Google Scholar 

  • Uwizeyimana, H., Wang, M., Chen, W., & Khan, K. (2017). The eco-toxic effects of pesticide and trace metal mixtures towards earthworms in soil. Environmental Toxicology and Pharmacology, 55, 20–29.

    Article  CAS  Google Scholar 

  • Verma, R., Xu, X., Jaiswal, M. K., Olsen, C., Mears, D., Caretti, G., et al. (2011). In vitro profiling of epigenetic modifications underlying heavy metal toxicity of tungsten-alloy and its components. Toxicology and Applied Pharmacology, 253, 178–187.

    Article  CAS  Google Scholar 

  • Wang, A. Y., Li, R. P., & Ni, S. Q. (2014). Relationship between heavy metal accumulation of rice field topsoils along the Le’an River and the Dexing ore concentration area, northeast Jiangxi Province. Geological Bulletin of China (in Chinese), 33, 1213–1219.

    Google Scholar 

  • Wang, Y. Q., Yang, L. Y., Kong, L. H., Liu, E. F., Wang, L. F., & Zhu, J. R. (2015). Spatial distribution, ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake, Shandong, East China. CATENA, 125, 200–205.

    Article  CAS  Google Scholar 

  • Wong, S. C., Li, X. D., Zhang, G., Qi, S. H., & Min, Y. S. (2002). Heavy metals in agricultural soils of the Pearl River Delta, South China. Environmental Pollution, 119, 33–44.

    Article  CAS  Google Scholar 

  • Wu, J. Y., Zhou, J. L., Liu, Z. T., Wang, X. N., & Gao, A. F. (2014). Spatial distribution and risk assessment of heavy metals in the surface sediments of the Liao River. Environmental Science & Technology, 37(6N), 268–273.

    Google Scholar 

  • Yang XL (2011) The geological characteristics of Dexing Yinshan copper-lead-zinc deposit, mining exploration and evaluation work of deep resources. Central South University (in chinese) (pp. 23–45).

  • Zhang, H., Jiang, Y., Ding, M., & Xie, Z. (2017). Level, source identification, and risk analysis of Heavy metal in surface sediments from river-lake ecosystems in the Poyang Lake, China. Environmental Science and Pollution Research International, 24, 21902–21916.

    Article  CAS  Google Scholar 

  • Zhuang, P., Shu, W., Li, Z., Liao, B., Li, J., & Shao, J. (2009). Removal of metals by sorghum plants from contaminated land. Journal of Environmental Science (in chinese), 21, 1432–1437.

    Article  CAS  Google Scholar 

  • Zoller, W. H., Gladney, E. S., Gordon, G. E., & Bors, J. J. (1974). Emissions of trace elements from coal fired power plants. In D. D. Hemphill (Ed.), Trace substances in environmental health (8) (pp. 167–172). Rolla: University of Missouri, Colombia.

    Google Scholar 

Download references

Acknowledgements

This project was supported by the start fund of high-level talent researcher for Dongguan University of Technology (GC200109-17) and National Natural Science Foundation of China (NSFC-81273127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal right statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Lin, B., Yuan, M. et al. Trace metal pollution and ecological risk assessment in agricultural soil in Dexing Pb/Zn mining area, China. Environ Geochem Health 41, 967–980 (2019). https://doi.org/10.1007/s10653-018-0193-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0193-x

Keywords

Navigation