Skip to main content

Advertisement

Log in

Preparation of nitrogen-doped Cu-biochar and its application into catalytic reduction of p-nitrophenol

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Nitrogen-doped copper-biochar (N–Cu-biochar) was synthesized via pyrolysis of glucose in the presence of copper and melamine and used as a catalyst in the reduction of p-nitrophenol by NaBH4. N–Cu–biochar was characterized by field emission scanning electron microscopy/energy-dispersive spectroscopy, Raman spectroscopy, X-ray Diffraction, and Brunauer–Emmett–Teller surface analyzer. The catalytic performance of N–Cu-biochar was evaluated under varying conditions of NaBH4 concentration, biochar dosage, and initial p-nitrophenol concentration. N–Cu-biochar was composed of ~83% C, ~9% O, and ~8% Cu, with Cu/Cu2O phases evenly dispersed on graphitic carbon aggregates possessing both macro- and meso-pores. N–Cu-biochar showed superior catalytic ability in mediating p-nitrophenol reduction as compared to Cu-biochar and N-doped biochar, achieving complete reduction of 0.35 mM p-nitrophenol within 30 min at a dose of 0.25 g L−1. Reduction of p-nitrophenol catalyzed by N–Cu-biochar followed pseudo-first-order kinetics, and the reaction rate was dependent upon NaBH4 concentration. The overall results indicate that biochar can be a suitable candidate as a support for catalyst synthesis, and N-doped Cu-biochar can be a promising catalyst for the reduction of p-nitrophenol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., et al. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33.

    Article  CAS  Google Scholar 

  • Baricelli, P. J., Castillo, A., Longo, C., & Pardey, A. J. (2000). Homogeneous catalytic oxidation of cyclohexene by nitro complexes of copper(II). Reaction Kinetics and Catalysis Letters, 70(1), 133–138.

    Article  CAS  Google Scholar 

  • Bhandari, R., & Knecht, M. R. (2011). Effects of the Material Structure on the Catalytic Activity of Peptide-Templated Pd Nanomaterials. Acs Catalysis, 1(2), 89–98.

    Article  CAS  Google Scholar 

  • Chen, J., Zhang, H., Liu, P., Li, Y., Liu, X., Li, G., et al. (2015). Cross-linked ZnIn2S4/rGO composite photocatalyst for sunlight-driven photocatalytic degradation of 4-nitrophenol. Applied Catalysis, B: Environmental, 168–169, 266–273.

    Article  CAS  Google Scholar 

  • Choi, H., Al-Abed, S. R., Agarwai, S., & Dionysiou, D. D. (2008). Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs. Chemistry of Materials, 20(11), 3649–3655.

    Article  CAS  Google Scholar 

  • Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., et al. (2006). Raman spectrum of graphene and graphene layers. Physical Review Letters, 97(18), 187401.

    Article  CAS  Google Scholar 

  • Frindy, S., El Kadib, A., Lahcini, M., Primo, A., & Garcia, H. (2016). Isotropic and oriented copper nanoparticles supported on graphene as aniline guanylation catalysts. ACS Catalysis, 6(6), 3863–3869.

    Article  CAS  Google Scholar 

  • Gamez, P., Aubel, P. G., Driessen, W. L., & Reedijk, J. (2001). Homogeneous bio-inspired copper-catalyzed oxidation reactions. Chemical Society Reviews, 30(6), 376–385.

    Article  CAS  Google Scholar 

  • Gao, L., Li, R., Sui, X. L., Li, R., Chen, C. L., & Chen, Q. W. (2014). Conversion of chicken feather waste to N-doped carbon nanotubes for the catalytic reduction of 4-nitrophenol. Environmental Science and Technology, 48(17), 10191–10197.

    Article  CAS  Google Scholar 

  • Guo, M. Z., He, J., Li, Y., Ma, S., & Sun, X. H. (2016). One-step synthesis of hollow porous gold nanoparticles with tunable particle size for the reduction of 4-nitrophenol. Journal of Hazardous Materials, 310, 89–97.

    Article  CAS  Google Scholar 

  • Han, N., Cao, S., Han, J., Hu, J., Zhang, X., & Guo, R. (2016). Surface cavities of Ni(OH)2 nanowires can host Au nanoparticles as supported catalysts with high catalytic activity and stability. Journal of Materials Chemistry A, 4, 2590–2596.

    Article  CAS  Google Scholar 

  • Hasan, Z., Cho, D. W., Chon, C. M., Yoon, K., & Song, H. (2016). Reduction of p-nitrophenol by magnetic Co-carbon composites derived from metal organic frameworks. Chemical Engineering Journal, 298, 183–190.

    Article  CAS  Google Scholar 

  • Jiang, Y. J., Li, G. Z., Li, X. D., Lu, S. X., Wang, L., & Zhang, X. W. (2014). Water-dispersible Fe3O4 nanowires as efficient supports for noble-metal catalysed aqueous reactions. Journal of Materials Chemistry A, 2(13), 4779–4787.

    Article  CAS  Google Scholar 

  • Jiang, Y. F., Sun, H., Yves, U. J., Li, H., & Hu, X. F. (2016). Impact of biochar produced from post-harvest residue on the adsorption behavior of diesel oil on loess soil. Environmental Geochemistry and Health, 38(1), 243–253.

    Article  CAS  Google Scholar 

  • Kozma, G., Rónavári, A., Kónya, Z., & Kukovecz, Á. (2016). Environmentally benign synthesis methods of zero-valent iron nanoparticles. ACS Sustainable Chemistry and Engineering, 4, 291–297.

    Article  CAS  Google Scholar 

  • Lee, W. J., Maiti, U. N., Lee, J. M., Lim, J., Han, T. H., & Kim, S. O. (2014). Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications. Chemical Communications, 50(52), 6818–6830.

    Article  CAS  Google Scholar 

  • Lin, F. H., & Doong, R. A. (2011). Bifunctional Au–Fe3O4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction. Journal of Physical Chemistry C, 115(14), 6591–6598.

    Article  CAS  Google Scholar 

  • Lin, F. H., & Doong, R. A. (2014). Highly efficient reduction of 4-nitrophenol by heterostructured gold-magnetite nanocatalysts. Applied Catalysis a-General, 486, 32–41.

    Article  CAS  Google Scholar 

  • Lu, W., Chen, W., Li, N., Xu, M., & Yao, Y. (2009). Oxidative removal of 4-nitrophenol using activated carbon fiber and hydrogen peroxide to enhance reactivity of metallophthalocyanine. Applied Catalysis, B: Environmental, 87, 146–151.

    Article  CAS  Google Scholar 

  • Mahamallik, P., & Pal, A. (2015). A soft-template mediated approach for Au(0) formation on a heterosilica surface and synergism in the catalytic reduction of 4-nitrophenol. RSC Advances, 5(95), 78006–78016.

    Article  CAS  Google Scholar 

  • Marais, E., & Nyokong, T. (2008). Adsorption of 4-nitrophenol onto Amberlite® IRA-900 modified with metallophthalocyanines. Journal of Hazardous Materials, 152, 293–301.

    Article  CAS  Google Scholar 

  • Modirshahla, N., Behnajady, M. A., & Mohammadi-Aghdam, S. (2008). Investigation of the effect of different electrodes and their connections on the removal efficiency of 4-nitrophenol from aqueous solution by electrocoagulation. Journal of Hazardous Materials, 154, 778–786.

    Article  CAS  Google Scholar 

  • Nasrollahzadeh, M., Zahraei, A., Ehsani, A., & Khalaj, M. (2014). Synthesis, characterization, antibacterial and catalytic activity of a nanopolymer supported copper(II) complex as a highly active and recyclable catalyst for the formamidation of arylboronic acids under aerobic conditions. RSC Advances, 4(39), 20351–20357.

    Article  CAS  Google Scholar 

  • Nasrollahzadeh, M., Sajadi, S. M., Rostami-Vartooni, A., Bagherzadeh, M., & Safari, R. (2015). Immobilization of copper nanoparticles on perlite: Green synthesis, characterization and catalytic activity on aqueous reduction of 4-nitrophenol. Journal of Molecular Catalysis A: Chemical, 400, 22–30.

    Article  CAS  Google Scholar 

  • Nemanashi, M., & Meijboom, R. (2013). Synthesis and characterization of Cu, Ag and Au dendrimer-encapsulated nanoparticles and their application in the reduction of 4-nitrophenol to 4-aminophenol. Journal of Colloid and Interface Science, 389, 260–267.

    Article  CAS  Google Scholar 

  • Niu, H. Y., Liu, S. L., Cai, Y. Q., Wu, F. C., & Zhao, X. L. (2016). MOF derived porous carbon supported Cu/Cu2O composite as high performance non-noble catalyst. Microporous and Mesoporous Materials, 219, 48–53.

    Article  CAS  Google Scholar 

  • O’Connor, O. A., & Young, L. Y. (1989). Toxicity and anaerobic biodegradability of substituted phenols under methanogenic conditions. Environmental Toxicology and Chemistry, 8, 853–862.

    Article  Google Scholar 

  • Pradhan, N., Pal, A., & Pal, T. (2002). Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 196(2–3), 247–257.

    Article  CAS  Google Scholar 

  • Rajapaksha, A. U., Ahmad, M., Vithanage, M., Kim, K. R., Chang, J. Y., Lee, S. S., et al. (2015). The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil. Environmental Geochemistry and Health, 37(6), 931–942.

    Article  CAS  Google Scholar 

  • Shi, J. J., Wang, Y. Y., Du, W. C., & Hou, Z. Y. (2016). Synthesis of graphene encapsulated Fe3C in carbon nanotubes from biomass and its catalysis application. Carbon, 99, 330–337.

    Article  CAS  Google Scholar 

  • Subashchandrabose, S. R., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2012). p-nitrophenol toxicity to and its removal by three select soil isolates of microalgae: The role of antioxidants. Environmental Toxicology and Chemistry, 31(9), 1980–1988.

    Article  CAS  Google Scholar 

  • Tian, Y., Cao, Y. Y., Pang, F., Chen, G. Q., & Zhang, X. (2014). Ag nanoparticles supported on N-doped graphene hybrids for catalytic reduction of 4-nitrophenol. RSC Advances, 4(81), 43204–43211.

    Article  CAS  Google Scholar 

  • Torkamani, F., & Azizian, S. (2016). Green and simple synthesis of Ag nanoparticles loaded onto cellulosic fiber as efficient and low-cost catalyst for reduction of 4-nitrophenol. Journal of Molecular Liquids, 214, 270–275.

    Article  CAS  Google Scholar 

  • Usman, A. R. A., Ahmad, M., El-Mahrouky, M., Al-Omran, A., Ok, Y. S., Sallam, A. S., et al. (2016). Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions. Environmental Geochemistry and Health, 38(2), 511–521.

    Article  CAS  Google Scholar 

  • Vats, T., Dutt, S., Kumar, R., & Siril, P. F. (2016). Facile synthesis of pristine graphene-palladium nanocomposites with extraordinary catalytic activities using swollen liquid crystals. Scientific Reports, 6, article number 33053.

  • Wang, H. B., Maiyalagan, T., & Wang, X. (2012). Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catalysis, 2(5), 781–794.

    Article  CAS  Google Scholar 

  • Wunder, S., Polzer, F., Lu, Y., Mei, Y., & Ballauff, M. (2010). Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. Journal of Physical Chemistry C, 114(19), 8814–8820.

    Article  CAS  Google Scholar 

  • Xu, J., Wang, L., & Zhu, Y. F. (2012). Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir, 28(22), 8418–8425.

    Article  CAS  Google Scholar 

  • Yang, X. L., Zhong, H., Zhu, Y. H., Jiang, H. L., Shen, J. H., Huang, J. F., et al. (2014). Highly efficient reusable catalyst based on silicon nanowire arrays decorated with copper nanoparticles. Journal of Materials Chemistry A, 2(24), 9040–9047.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Korea Ministry of Environment (MOE) as Waste to Energy-recycling Human Resource Development project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hocheol Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, DW., Kim, S., Tsang, Y.F. et al. Preparation of nitrogen-doped Cu-biochar and its application into catalytic reduction of p-nitrophenol. Environ Geochem Health 41, 1729–1737 (2019). https://doi.org/10.1007/s10653-017-9966-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-9966-x

Keywords

Navigation