Skip to main content
Log in

Development of a modular vapor intrusion model with variably saturated and non-isothermal vadose zone

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Human health risk assessment at hydrocarbon-contaminated sites requires a critical evaluation of the exposure pathways of volatile organic compounds including assessments of vapor exposure in indoor air. Although there are a number of vapor intrusion models (VIM) currently available, they rarely reproduce actual properties of soils in the vadose zone. At best, users of such models assume averaged parameters for the vadose zone based on information generated elsewhere. The objective of this study was to develop a one-dimensional steady-state VIM, indoorCARE™ model, that considers vertical spatial variations of the degree of saturation (or effective air-filled porosity) and temperature of the vadose zone. The indoorCARE™ model was developed using a quasi-analytical equation that (1) solves the coupled equations governing soil–water movement driven by pressure head and a soil heat transport module describing conduction of heat and (2) provides a VIM that accommodates various types of conceptual site model (CSM) scenarios. The indoorCARE™ model is applicable to both chlorinated hydrocarbon and petroleum hydrocarbon (PHC) contaminated sites. The model incorporates biodegradations of PHCs at a range of CSM scenarios. The results demonstrate that predictions of indoor vapor concentrations made with the indoorCARE™ model are close to those of the J&E and BioVapor models under homogeneous vadose zone conditions. The newly developed model under heterogeneous vadose zone conditions demonstrated improved predictions of indoor vapor concentrations. The research study presented a more accurate and more realistic way to evaluate potential human health risks associated with the soil-vapor-to-indoor-air pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CHC:

Chlorinated hydrocarbon

HSL:

Health screening level

PHC:

Petroleum hydrocarbon

NA:

Natural attenuation

NAPL:

Non-aqueous phase liquid

CSM:

Conceptual site model

SOM:

Soil organic matter

TCE:

Trichloroethylene

UST:

Underground storage tank

VI:

Vapor intrusion

VIM:

Vapor intrusion model

VOC:

Volatile organic compound

References

  • Abreu, L. D., & Johnson, P. C. (2005). Effect of vapor source and building separation and building construction on soil vapor intrusion as studied with a three-dimensional numerical model. Environmental Science and Technology, 39(12), 4550–4561. doi:10.1021/es049781k.

    Article  CAS  Google Scholar 

  • Abreu, L. D. V., & Johnson, P. C. (2006). Simulating the effect of aerobic biodegradation on soil vapor intrusion into buildings: Influence of degradation rate, source concentration, and depth. Environmental Science and Technology, 40(7), 2304–2315. doi:10.1021/es051335p.

    Article  CAS  Google Scholar 

  • Abreu, L. D. V., Ettinger, R., & McAlary, T. (2009). Simulated soil vapor intrusion attenuation factors including biodegradation for petroleum hydrocarbons. Ground Water Monitoring and Remediation, 29(1), 105–117. doi:10.1111/j.1745-6592.2008.01219.x.

    Article  CAS  Google Scholar 

  • Abu-Hamdeh, N. H. (2003). Thermal properties of soils as affected by density and water content. Biosystems Engineering, 86(1), 97–102.

    Article  Google Scholar 

  • Abu-Hamdeh, N. H., & Reeder, R. C. (2000). Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter. Soil Science Society of America Journal, 64(4), 1285–1290. doi:10.2136/sssaj2000.6441285x.

    Article  CAS  Google Scholar 

  • API. (2009). BioVapor, a 1-D vapor intrusion model with oxygen-limited aerobic biodegradation. American Petroleum Institute. http://www.api.org.

  • Atteia, O., & Hohener, P. (2010). Semianalytical model predicting transfer of volatile pollutants from groundwater to the soil surface. Environmental Science and Technology, 44(16), 6228–6232. doi:10.1021/es903477f.

    Article  CAS  Google Scholar 

  • Becker, B. R., Misra, A., & Fricke, B. A. (1992). Development of correlations for soil thermal conductivity. International Communications in Heat and Mass Transfer; (United States), 19(1), 59–68.

    Article  Google Scholar 

  • Bekele, D. N., Naidu, R., Bowman, M., & Chadalavada, S. (2013). Vapor intrusion models for petroleum and chlorinated volatile organic compounds: Opportunities for future improvements. gsvadzone, 12(2). doi:10.2136/vzj2012.0048.

  • Bozkurt, O., Pennell, K. G., & Suuberg, E. M. (2009). Simulation of the vapor intrusion process for nonhomogeneous soils using a three-dimensional numerical model. Ground Water Monitoring and Remediation, 29(1), 92–104.

    Article  Google Scholar 

  • Brooks, R. H., & Corey, A. T. (1964). Hydraulic properties of porous media. Colorado State University, Fort Collins, Co (1964), Hydrology Paper No. 3 (p. 27).

  • Chen, G. (2004). Reductive dehalogenation of tetrachloroethylene by microorganisms: Current knowledge and application strategies. Applied Microbiology and Biotechnology, 63(4), 373–377.

    Article  CAS  Google Scholar 

  • Cosenza, P., Guérin, R., & Tabbagh, A. (2003). Relationship between thermal conductivity and water content of soils using numerical modelling. European Journal of Soil Science, 54(3), 581–588. doi:10.1046/j.1365-2389.2003.00539.x.

    Article  Google Scholar 

  • Davis, G. B., Rayner, J. L., Trefry, M. G., Fisher, S. J., & Patterson, B. M. (2005). Measurement and modeling of temporal variations in hydrocarbon vapor behavior in a layered soil profile. Vadose Zone Journal, 4(2), 225–239. doi:10.2136/vzj2004.0029.

    Article  CAS  Google Scholar 

  • Davis, G. B., Trefry, M. G., & Patterson, B. M. (2009). Petroleum vapour model comparison. Adelaide, Australia: CRC for contamination assessment and remediation of the environment, March 2009, Technical Report No. 9.

  • DeVaull, G. E. (2007). Indoor vapor intrusion with oxygen-limited biodegradation for a subsurface gasoline source. Environmental Science and Technology, 41(9), 3241–3248. doi:10.1021/es060672a.

    Article  CAS  Google Scholar 

  • Environmental Quality Management (2004). User’s guide for evaluating subsurface vapor intrusion into buildings. (Vol. Work Assignment No. 004, pp. 12–13): U.S. Environmental Protection Agency Contract No. 68-W-02-33, Environmental Quality Management, Inc.: Durham, North Carolina, February 22, 2004.

  • Fitzpatrick, N. A., & Fitzgerald, J. J. (2002). An evaluation of vapor intrusion into buildings through a study of field data. Soil and Sediment Contamination: An International Journal, 11(4), 603–623. doi:10.1080/20025891107186.

    Article  CAS  Google Scholar 

  • Hers, I., Zapf-Gilje, R., Johnson, P. C., & Li, L. (2003). Evaluation of the Johnson and Ettinger model for prediction of indoor air quality. Ground Water Monitoring and Remediation, 23(2), 119–133.

    Article  CAS  Google Scholar 

  • Hers, I., Jourabchi, P., Lahvis, M. A., Dahlen, P., Luo, E. H., Johnson, P., et al. (2014). Evaluation of seasonal factors on petroleum hydrocarbon vapor biodegradation and intrusion potential in a cold climate. Groundwater Monitoring & Remediation, 34(4), 60–78. doi:10.1111/gwmr.12085.

    Article  CAS  Google Scholar 

  • Hillel, D. (1982). Introduction to soil physics (pp. 155–175). New York: Academic Press.

    Book  Google Scholar 

  • Johnson, P. C., & Ettinger, R. A. (1991). Heuristic model for predicting the intrusion rate of contaminant vapors into buildings. Environmental Science and Technology, 25(8), 1445–1452. doi:10.1021/es00020a013.

    Article  CAS  Google Scholar 

  • Jury, W. A., Russo, D., Streile, G., & El Abd, H. (1990). Evaluation of volatilization by organic chemicals residing below the soil surface. Water Resoures Research, 26(1), 13–20. doi:10.1029/WR026i001p00013.

    Article  CAS  Google Scholar 

  • Millington, R. J., & Quirk, J. P. (1961). Permeability of porous solids. Transactions of the Faraday Society, 57, 1200–1207.

    Article  CAS  Google Scholar 

  • Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3), 513–522. doi:10.1029/WR012i003p00513.

    Article  Google Scholar 

  • Nazaroff, W. W., Lewis, S. R., Doyle, S. M., Moed, B. A., & Nero, A. V. (1987). Experiments on pollutant transport from soil into residential basements by pressure-driven airflow. Environmental Science and Technology, 21(5), 459–466. doi:10.1021/es00159a006.

    Article  CAS  Google Scholar 

  • Ong, S. K., Culver, T. B., Lion, L. W., & Shoemaker, C. A. (1992). Effects of soil moisture and physical-chemical properties of organic pollutants on vapor-phase transport in the vadose zone. Journal of Contaminant Hydrology, 11(3–4), 273–290.

    Article  CAS  Google Scholar 

  • Parker, J. C., Lenhard, R. J., & Kuppusamy, T. (1987). A parametric model for constitutive properties governing multiphase flow in porous media. Water Resources Research, 23(4), 618–624. doi:10.1029/WR023i004p00618.

    Article  CAS  Google Scholar 

  • Pennell, K. G., Bozkurt, O., & Suuberg, E. M. (2009). Development and application of a three-dimensional finite element vapor intrusion model. Journal of the Air and Waste Management Association, 59(4), 447–460. doi:10.3155/1047-3289.59.4.447.

    Article  CAS  Google Scholar 

  • Peters-Lidard, C. D., Blackburn, E., Liang, X., & Wood, E. F. (1998). The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. Journal of the Atmospheric Sciences. doi:10.1175/1520-0469(1998)055<1209:TEOSTC>2.0.CO;2.

    Google Scholar 

  • Rivett, M. O., Wealthall, G. P., Dearden, R. A., & McAlary, T. A. (2011). Review of unsaturated-zone transport and attenuation of volatile organic compound (VOC) plumes leached from shallow source zones. Journal of Contaminant Hydrology, 123(3–4), 130–156.

    Article  CAS  Google Scholar 

  • Robinson, N. I., & Turczynowicz, L. (2005). One- and three-dimensional soil transportation models for volatiles migrating from soils to house interiors. Transport in Porous Media, 59(3), 301–323. doi:10.1007/s11242-004-2554-4.

    Article  CAS  Google Scholar 

  • Sanders, P. F., & Talimcioglu, N. M. (1997). Soil-to-indoor air exposure models for volatile organic compounds: The effect of soil moisture. Environmental Toxicology and Chemistry, 16(12), 2597–2604. doi:10.1002/etc.5620161223.

    Article  CAS  Google Scholar 

  • Scanlon, B. R., Nicot, J. P., & Massmann, J. W. (2002). Soil gas movement in unsaturated systems. In M. E. Sumner (Ed.), Handbook of soil sciences (pp. A297–A336). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Schuver, H. (2007). Intrusion: Risks and challenges. Journal of the Air and Waste Management Association, 2007, 6–9. https://www.environmental-expert.com/Files/6477/articles/10879/schuver.pdf.

  • Shen, R., Pennell, K. G., & Suuberg, E. M. (2013). Influence of soil moisture on soil gas vapor concentration for vapor intrusion. Environmental Engineering Science, 30(10), 628–637.

    Article  CAS  Google Scholar 

  • Siegel, L. (2009). Stakeholders’ views on vapor intrusion. Ground Water Monitoring and Remediation, 29(1), 53–57. doi:10.1111/j.1745-6592.2008.01214.x.

    Article  Google Scholar 

  • Tillman, F. D., & Smith, J. A. (2005). Vapor transport in the unsaturated zone. In  Water encyclopedia. Wiley. doi:10.1002/047147844X.gw1226.

  • Tillman, F. D., & Weaver, J. W. (2005). Review of recent research on vapor intrusion.U S Environmental Protection Agency Office of Research and Development, Washington DC 20460, EPA/600/R-05/106, September 2005. (Vol. EPA/600/R-05/106).

  • Tillman, J. F. D., & Weaver, J. W. (2006). Uncertainty from synergistic effects of multiple parameters in the Johnson and Ettinger (1991) vapor intrusion model. Atmospheric Environment, 40(22), 4098–4112.

    Article  CAS  Google Scholar 

  • Tillman, J. F. D., & Weaver, J. W. (2007). Parameter sets for upper and lower bounds on soil-to-indoor-air contaminant attenuation predicted by the Johnson and Ettinger vapor intrusion model. Atmospheric Environment, 41(27), 5797–5806.

    Article  CAS  Google Scholar 

  • U.S. EPA. (2002). Draft guidance for evaluating the vapor intrusion to indoor air pathway from groundwater and soils. Washington D.C.: USEPA Office of Solid Waste & Energy Response, US EPA530-D-02-004.

  • U.S. EPA. (2015). Technical guide for assessing and mitigating the vapor intrusion pathway from subsurface vapor source to indoor. OSWER Publication 9200.2-154

  • van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892–898. doi:10.2136/sssaj1980.03615995004400050002x.

    Article  Google Scholar 

  • Van Wijk, W. R., & De Vries, V. A. (1963). Periodic temperature variations in a homogeneous soil. In W. R. Van Wijk (Ed.), Physics of plant environment (Chap. 4, pp. 103–143). Amsterdam: North-Holland Publishing Co.

  • Verginelli, I., & Baciocchi, R. (2011). Modeling of vapor intrusion from hydrocarbon-contaminated sources accounting for aerobic and anaerobic biodegradation. Journal of Contaminant Hydrology, 126(3), 167–180. doi:10.1016/j.jconhyd.2011.08.010.

    Article  CAS  Google Scholar 

  • Verginelli, I., Yao, Y., & Suuberg, E. M. (2016). An excel®-based visualization tool of two-dimensional soil gas concentration profiles in petroleum vapor intrusion. Groundwater Monitoring & Remediation, 36(2), 94–100. doi:10.1111/gwmr.12162.

    Article  CAS  Google Scholar 

  • Yao, Y., & Suuberg, E. M. (2013). A review of vapor intrusion models. Environmental Science and Technology, 47(6), 2457–2470. doi:10.1021/es302714g.

    Article  CAS  Google Scholar 

  • Yao, Y., Wu, Y., Wang, Y., Verginelli, I., Zeng, T., Suuberg, E. M., et al. (2015). A petroleum vapor intrusion model involving upward advective soil gas flow due to methane generation. Environmental Science and Technology, 49(19), 11577–11585. doi:10.1021/acs.est.5b01314.

    Article  CAS  Google Scholar 

  • Yao, Y., Verginelli, I., & Suuberg, E. M. (2016). A two-dimensional analytical model of petroleum vapor intrusion. Water Resources Research, 52(2), 1528–1539. doi:10.1002/2015WR018320.

    Article  CAS  Google Scholar 

  • Yao, Y., Verginelli, I., & Suuberg, E. M. (2017). A two-dimensional analytical model of vapor intrusion involving vertical heterogeneity. Water Resources Research, 53(5), 4499–4513.

    Article  Google Scholar 

  • Yu, S., Unger, A. J. A., & Parker, B. (2009). Simulating the fate and transport of TCE from groundwater to indoor air. Journal of Contaminant Hydrology, 107(3–4), 140–161.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawit N. Bekele.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 161 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekele, D.N., Naidu, R. & Chadalavada, S. Development of a modular vapor intrusion model with variably saturated and non-isothermal vadose zone. Environ Geochem Health 40, 887–902 (2018). https://doi.org/10.1007/s10653-017-0032-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-0032-5

Keywords

Navigation