Skip to main content

Advertisement

Log in

Predicting arsenic concentrations in groundwater of San Luis Valley, Colorado: implications for individual-level lifetime exposure assessment

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Consumption of inorganic arsenic in drinking water at high levels has been associated with chronic diseases. Risk is less clear at lower levels of arsenic, in part due to difficulties in estimating exposure. Herein we characterize spatial and temporal variability of arsenic concentrations and develop models for predicting aquifer arsenic concentrations in the San Luis Valley, Colorado, an area of moderately elevated arsenic in groundwater. This study included historical water samples with total arsenic concentrations from 595 unique well locations. A longitudinal analysis established temporal stability in arsenic levels in individual wells. The mean arsenic levels for a random sample of 535 wells were incorporated into five kriging models to predict groundwater arsenic concentrations at any point in time. A separate validation dataset (n = 60 wells) was used to identify the model with strongest predictability. Findings indicate that arsenic concentrations are temporally stable (r = 0.88; 95 % CI 0.83–0.92 for samples collected from the same well 15–25 years apart) and the spatial model created using ordinary kriging best predicted arsenic concentrations (ρ = 0.72 between predicted and observed validation data). These findings illustrate the value of geostatistical modeling of arsenic and suggest the San Luis Valley is a good region for conducting epidemiologic studies of groundwater metals because of the ability to accurately predict variation in groundwater arsenic concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aber, J. M. (2008). http://academic.emporia.edu/aberjame/field/rocky_mt/zapata.htm. Accessed 2008.

  • Abernathy, C. O., Liu, Y. P., Longfellow, D., Aposhian, H. V., Beck, B., Fowler, B., et al. (1999). Arsenic: Health effects, mechanisms, of actions, and research issues. Environmental Health Perspectives, 107(7), 593–597.

    Article  CAS  Google Scholar 

  • Ayotte, J. D., Nolan, B. T., Nuckols, J. R., Cantor, K. P., Robinson, G. R., Baris, D., et al. (2006). Modeling the probability of arsenic in groundwater in New England as a tool for exposure assessment. Environmental Sciences Technology, 40(11), 3578–3585.

    Article  CAS  Google Scholar 

  • Bhattacharya, R., Chatterjee, D., Nath, B., Jana, J., Jacks, G., & Vahter, M. (2003). High arsenic groundwater: Mobilization, metabolism, and mitigation—An overview in the Bengal Delta Plain. Molecular and Cellular Biochemistry, 253, 347–355.

    Article  Google Scholar 

  • Colt, J. E., Dalsu, B., Clark, S. E., Ayotte, J. D., Ward, M., Nuckols, J. R., et al. (2002). Sampling private wells at past homes to estimate arsenic exposure: A methodologic study in New England. Journal of Exposure Analysis and Environmental Epidemiology, 12, 329–344.

    Article  CAS  Google Scholar 

  • Emery, P. (1979). Geohydrology of the San Luis Valley, Colorado, USA. The hydrology of areas of low precipitation. In Proceedings of the Canberra symposium: IAHS-AISH publ. no. 128.

  • Engel, R. R., & Smith, A. H. (1994). Arsenic in drinking water and mortality from vascular disease: An ecologic analysis in 30 countries in the United States. Archives of Environmental Health, 49(5), 418–427.

    Article  CAS  Google Scholar 

  • Focazio, M. J., Welch, A. H., Watkins, S. A., Helsel, D. R., & Horn, M. A. (2000). A retrospective analysis on the occurrence of arsenic in ground-water resources in the United States and limitations in drinking-water-supply characterizations. Water resources investigations report 99-4279. US Geological Survey, Reston, VA, USA.

  • Francisca, F. M., & Carro Perez, M. E. (2009). Assessment of natural arsenic in groundwater in Cordoba Province, Argentina, 2009. Environmental Geochemistry and Health, 31(6), 673–682.

    Article  CAS  Google Scholar 

  • Gamma Designs Software, LLC (2009). http://www.gammadesign.com/. Accessed 2009.

  • Goovaerts, P. (1997). Geostatistics for Natural Resources Evaluation. (pp. 190–191). Oxford University Press.

  • Goovaerts, P., AvRuskin, G., Meliker, J. R., Slotnick, M., Jacquez, G., & Nriagu, J. O. (2005). Geostatistical modeling of the spatial variability of arsenic in groundwater of southeast Michigan. Water Resources Research, 41, W07013.

    Article  Google Scholar 

  • Gribble, M. O., Howard, B. V., Umans, J. G., Shara, N. M., Francesconi, K. A., Goessler, W., et al. (2013). Arsenic exposure, diabetes prevalence, and diabetes control in the Strong Heart Study. American Journal of Epidemiology, 176(10), 865–874.

    Article  Google Scholar 

  • Hassan, M. M., & Atkins, P. J. (2011). Application of geostatistics with indicator kriging for analyzing spatial variability of groundwater arsenic concentrations in Southwest Bangladesh. Journal of Environmental Science and Health, Part A, Toxic/Hazardous Substances and Environmental Engineering, 46(11), 1185–1196.

    Article  CAS  Google Scholar 

  • Hinwood, A. L., Sim, M. R., Jolley, D., DeKlerk, N., Bastone, E. B., Gerostamoulos, J., et al. (2003). Risk factors for increased urinary inorganic arsenic concentrations from low arsenic concentrations in drinking water. International Journal of Environmental Health Research, 13(3), 271–284.

    Article  CAS  Google Scholar 

  • Hossain, F., Hill, A. J., & Bagtzoglou, A. C. (2007). Geostatistically-based management of arsenic contaminated ground water in shallow wells of Bangladesh. Water Resources Management, 21, 1245–1261. doi:10.1007/s11269-006-9079-2.

    Article  Google Scholar 

  • James, K. A., Marshall, J. A., Hokanson, J. E., Meliker, J. R., Zerbe, G. O., & Byers, T. E. (2013). A case-cohort study examining lifetime exposure to inorganic arsenic in drinking water and diabetes mellitus. Environmental Research, 123, 33–38.

    Article  CAS  Google Scholar 

  • Karagas, M. R., Tosteson, T. D., Blum, J., Morris, J. S., Baron, J. A., & Klaue, B. (1998). Design of an epidemiologic study of drinking water arsenic exposure and skin and bladder cancer risk in a US population. Environmental Health Perspectives, 106(94), 1047–1050.

    Article  Google Scholar 

  • Karthik, B., Islam, S., & Harvey, C. F. (2001). On the spatial variability of arsenic contamination in the groundwater of Bangladesh. Eos. Transactions AGU. 82(20), Spring Meeting Supplement. Abstract H61C-01.

  • Kim, D., Miranda, M. L., Tootoo, J., Bradley, P., & Gelfand, A. E. (2011). Spatial modeling for groundwater arsenic levels in North Carolina. Environmental Sciences Technology, 45(11), 142–151.

    Google Scholar 

  • Lewis, D. R., Southwick, J. W., Ouellet-Hellstrom, A., Rench, J., & Calderon, R. L. (1999). Drinking water arsenic in Utah: A cohort mortality study. Environmental Health Perspectives, 107, 359–365.

    Article  CAS  Google Scholar 

  • Meliker, J. R., Wahl, R. L., Cameron, L. L., & Nriagu, J. O. (2007a). Arsenic in drinking water and cerebrovascular disease, diabetes mellitus, and kidney disease in Michigan: A standardized mortality ratio analysis. Environmental Health, 6, 4–15.

    Article  Google Scholar 

  • Meliker, J. R., AvRuskin, G. A., Fedewa, S. A., Goovaerts, P., Jacquez, G. J., & Nriagu, J. O. (2007b). Individual lifetime exposure to inorganic arsenic using a space–time information system. International Archives of Occupational and Environmental Health, 80, 184–197.

    Article  CAS  Google Scholar 

  • Meliker, J. R., AvRuskin, G. A., Slotnick, M. J., Goovaerts, P., Schottenfeld, D., Jacquez, G. M., et al. (2008). Validity of spatial models of arsenic concentrations in private well water. Environmental Research, 106, 42–50.

    Article  CAS  Google Scholar 

  • Mostafa, M. G., & Cherry, N. (2013). Arsenic in drinking water and renal cancers in rural Bangladesh. Occupational and Environmental Medicine, 70(11), 768–773.

    Article  CAS  Google Scholar 

  • Mukherjee, A., Bhattacharya, P., Savage, K., Foster, A., & Bundschuh, J. (2008). Distribution of geogenic arsenic in hydrologic systems: Controls and challenges. Journal of Contaminant Hydrology, 99(1–4), 1–7.

    Article  CAS  Google Scholar 

  • NWQMC: National Water Quality Monitoring Council. (2013). www.waterqualitydata.us. Accessed August 2012.

  • Ryan, P. B., Huet, N., & MacIntosh, D. L. (2000). Longitudinal investigation of exposure to arsenic, cadmium, and lead in drinking water. Environmental Health Perspectives, 108, 731–735.

    Article  CAS  Google Scholar 

  • Seiler, R. L. (2004). Temporal changes in water quality at a childhood leukemia cluster. Ground Water, 42, 446–455.

    Article  CAS  Google Scholar 

  • Sharif, M. U., Davis, R. K., Steele, K. F., Kim, B., Hays, P. D., Kresse, T. M., et al. (2008). Distribution and variability of redox zones controlling spatial variability of arsenic in the Mississippi River Valley alluvial aquifer, southeastern Arkansas. Journal of Contaminant Hydrology, 99(1–4), 49–67.

    Article  CAS  Google Scholar 

  • Steinmaus, C. M., Yuan, Y., & Smith, A. H. (2005). The temporal stability of arsenic concentrations in well water in western Nevada. Environmental Resources, 99(2), 164–168.

    CAS  Google Scholar 

  • United States Census Bureau. (2011). www.census.gov. Accessed Dec 2011.

  • United States Bureau of Reclamation. (2011). http://www.usbr.gov/projects/Project.jsp?proj_Name=San%20Luis%20Valley%20Project. Accessed 2011.

  • United States Environmental Protection Agency. (2001). Fact sheet: Drinking water standard for arsenic. EPA 815-F-00-015; Washington, DC Jan 2001.

  • United States Environmental Protection Agency. (2011). http://yosemite.epa.gov/opa/admpress.nsf/1ef7cd36224b565785257359003f533f/7a57668cb150dd4d852572b900725c0d!OpenDocument. Accessed Sept 2011.

  • Wang, S. L., Chiou, J. M., Chen, C. J., Tseng, C. H., Chou, W. L., & Wang, C. C. (2003). Prevalence of non-insulin-dependent diabetes mellitus and related vascular diseases in southwestern arseniasis-endemic and nonendemic areas in Taiwan. Environmental Health Perspectives, 111, 155–159.

    Article  Google Scholar 

  • Warner, K. L., Martin, Jr., A., & Arnold, T. L. (2003). Arsenic in Illinois ground water: Community and private supplies. U.S. Geological Survey Water Resource Investment Report. 2003, 03-4103. http://il.water.usgs.gov/pubs/wrir03_4103.pdf.

  • Welch, A. H., Westjohn, D. B., Helsel, D. R., & Wanty, R. B. (2000). Arsenic in ground water of the United States: Occurrence and geochemistry. Ground Water, 38, 589–604.

    Article  CAS  Google Scholar 

  • Yang, Q., Jung, H. B., Culbertson, C. W., Marvinney, R. G., Loiselle, M. C., Locke, D. B., et al. (2009). Spatial pattern of groundwater arsenic occurrence and association with bedrock geology in greater Augusta, Maine. Environmental Sciences Technology, 43(8), 2714–2719.

    Article  CAS  Google Scholar 

  • Zhang, Q., Rodríguez-Lado, L., Johnson, C. A., Xue, H., Shi, J., Zheng, Q., et al. (2012). Predicting the risk of arsenic contaminated groundwater in Shanxi Province, Northern China. Environmental Pollution, 165, 118–123.

    Article  CAS  Google Scholar 

  • Zierold, K. M., Knobeloch, L., & Anderson, L. (2004). Prevalence of chronic diseases in adults exposed to arsenic-contaminated drinking water. American Journal of Public Health, 94, 1936–1937.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine A. James.

Rights and permissions

Reprints and permissions

About this article

Cite this article

James, K.A., Meliker, J.R., Buttenfield, B.E. et al. Predicting arsenic concentrations in groundwater of San Luis Valley, Colorado: implications for individual-level lifetime exposure assessment. Environ Geochem Health 36, 773–782 (2014). https://doi.org/10.1007/s10653-014-9595-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-014-9595-6

Keywords

Navigation