Skip to main content

Advertisement

Log in

Principles and application of an in vivo swine assay for the determination of arsenic bioavailability in contaminated matrices

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The assessment of arsenic (As) bioavailability from contaminated matrices is a crucial parameter for reducing the uncertainty when estimating exposure for human health risk assessment. In vivo assessment of As utilising swine is considered an appropriate model for human health risk assessment applications as swine are remarkably similar to humans in terms of physiology and As metabolism. While limited in vivo As bioavailability data is available in the literature, few details have been provided regarding technical considerations for performing in vivo assays. This paper describes, with examples, surgical, experimental design and analytical issues associated with performing chronic and acute in vivo swine assays to determine As bioavailability in contaminated soil and food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abedin, M. J., Cresser, M. S., Meharg, A. A., Feldmann, J., & Cotter-Howells, J. (2002). Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environmental Science and Technology, 36, 962–968.

    Article  CAS  Google Scholar 

  • Agilent Technologies. (2006). Determination of heavy metals in whole blood by ICP-MS. Agilent Technologies publication number 5988-0533EN.

  • Akter, K. F., Chen, Z., Smith, L., Davey, D., & Naidu, R. (2005). Speciation of arsenic in groundwater samples: a comparative study of CE-UV, HG-AAS and LC-ICP-MS. Talanta, 68, 406–415.

    Article  Google Scholar 

  • Bain, S. A. F., Ting, J., Simeonovic, C. J., & Wilson, J. D. (1991). Technique of venous catheterization for sequential blood sampling from the pig. Journal of Investigative Surgery, 4, 103–107.

    Article  CAS  Google Scholar 

  • Casteel, S. W., Brown, L. D., Dunsmore, M. E., Weis, C. P., Henningsen, G. M., Hoffman, E., Brattin, W., Hammon, T. L. (1997). Relative bioavailability of arsenic in mining wastes. Document control no. 4500-88-AORH. U.S. Environmental Protection Agency, Region 8, Denver, CO.

  • Csanaky, I., & Gregus, Z. (2002). Species variations in the biliary and urinary excretion of arsenate, arsenite and their metabolites. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 131, 355–365.

    Article  Google Scholar 

  • Freeman, G. B., Johnson, J. D., Killinger, J. M., Liao, S. C., Davis, A. O., Ruby, M. V., et al. (1993). Bioavailability of arsenic in soil impacted by smelter activities following oral administration in rabbits. Fundamental and Applied Toxicology, 21, 83–88.

    Article  CAS  Google Scholar 

  • Freeman, G. B., Schoof, R. A., Ruby, M., Davis, A. O., Dill, S. C., Liao, S. C., et al. (1995). Bioavailability of arsenic in soil and house dust impacted by smelter activities following oral administration in cynomolgus monkeys. Fundamental and Applied Toxicology, 28, 215–222.

    Article  CAS  Google Scholar 

  • Gregus, Z., Gyurasics, A., & Csanaky, I. (2000). Biliary and urinary excretion of inorganic arsenic: monomethylarsonous acid as a major biliary metabolite in rats. Toxicology Science, 56, 18–25.

    Article  CAS  Google Scholar 

  • Groen, K., Vaessen, H., Kliest, J. J. G., de Boer, J. L. M., Ooik, T. V., Timmerman, A., et al. (1994). Bioavailability of inorganic arsenic from bog ore-containing soil in the dog. Environmental Health Perspectives, 102, 182–184.

    Article  CAS  Google Scholar 

  • Guha Mazumder, D. N., Haque, R., Ghosh, N., De, B. K., Santra, A., Chakraborti, D., et al. (1998). Arsenic levels in drinking water and the prevalence of skin lesions in West Bengal, India. International Journal of Epidemiology, 27, 871–877.

    Article  CAS  Google Scholar 

  • Guo, H. R., Chiang, H. S., Hu, H., Lipsitz, S. R., & Monson, R. R. (1997). Arsenic in drinking water and incidence of urinary cancers. Epidemiology, 8, 545–550.

    Article  CAS  Google Scholar 

  • Gyurasics, A., Varga, R., & Gregus, Z. (1991). Glutathione-dependent biliary excretion of arsenic. Biochemistry and Pharmacology, 42, 465–468.

    Article  CAS  Google Scholar 

  • Holliman, C. J., Kenfield, K., Nutter, E., Saffle, J. R., & Warden, G. D. (1982). Technique for acute subpubic catheterisation of urinary bladder in the pig. American Journal of Veterinary Research, 43, 1056–1057.

    CAS  Google Scholar 

  • Hughes, M. F., Devesa, V., Adair, B. M., Styblo, M., Kenyon, E. M., & Thomas, D. J. (2005). Tissue dosimetry, metabolism and excretion of pentavalent and trivalent monomethylated arsenic in mice after oral administration. Toxicology and Applied Pharmacology, 208, 186–197.

    Article  CAS  Google Scholar 

  • Juhasz, A. L., Smith, E., Weber, J., Rees, M., Rofe, A., Kuchel, T., et al. (2006). In vivo assessment of arsenic bioavailability in rice and its significance for human health risk assessment. Environmental Health Perspectives, 114, 1826–1831.

    CAS  Google Scholar 

  • Juhasz, A. L., Smith, E., Weber, J., Rees, M., Rofe, A., Kuchel, T., et al. (2007). Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils. Chemosphere. doi: 10.1016/j.chemosphere.2007.05.018.

  • Kelly, M. E., Brauning, S. E., Schoof, R. A., & Ruby, M. V. (2002). Assessing oral bioavailability of metals in soil. Ohio: Battelle Press.

    Google Scholar 

  • Lien, H. C., Tsai, T. F., Lee, Y. Y., & Hsiao, C. H. (2001). Merkel cell carcinoma and chronic arsenicism. Journal of the American Academy of Dermatology, 41, 641–643.

    Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: a review. Talanta, 58, 201–235.

    Article  CAS  Google Scholar 

  • Ng, J. C., Kratzmann, S. M., Qi, L., Crawley, H., Chiswell, B., & Moore, M. (1998). Speciation and absolute bioavailability: risk assessment of arsenic-contaminated sites in a residential suburb in Canberra. Analyst, 123, 889–892.

    Article  CAS  Google Scholar 

  • Rahman, M. M., Chowdhury, U. K., Mukherjee, S. C., Mondal, B. K., Paul, K., Lodh, D., et al. (2001). Chronic arsenic toxicity in Bangladesh and West Bengal, India: a review and commentary. Journal of Toxicology: Clinical Toxicology, 39, 683–700.

    Article  CAS  Google Scholar 

  • Roberts, S. M., Weimar, W. R., Vinson, J. R. T., Munson, J. W., & Bergeron, R. J. (2002). Measurement of arsenic bioavailability in soil using a primate model. Toxicology Science, 67, 303–310.

    Article  CAS  Google Scholar 

  • Rodriguez, R. R., Basta, N. T., Casteel, S. W., & Pace, L. W. (1999). An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. Environmental Science and Technology, 33, 642–649.

    Article  CAS  Google Scholar 

  • Ruby, M., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., et al. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science and Technology, 33, 3697–3705.

    Article  CAS  Google Scholar 

  • Smith, E., Naidu, R., & Alston, A. M. (1998). Arsenic in the soil environment: a review. Advances in Agronomy, 64, 149–195.

    Article  CAS  Google Scholar 

  • Thurmon, J. C., Nelson, D. R., Bevill, R. F., Harrnigton, G. W., & Magee, D. N. (1987). Surgical procedure for chronic bilary sample collection in pigs. American Journal of Veterinary Research, 48, 988–989.

    CAS  Google Scholar 

  • USEPA. (1998). Method 3051A, microwave assisted acid digest of sediments, sludges, soils and oils. In USEPA methods, pp 3051A/1-24.

  • Weis, C. P., & LaVelle, J. M. (1991). Characteristics to consider when choosing an animal model for the study if lead bioavailability. Chemical Speciation and Bioavailability, 3, 113–119.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded through the Australian Research Council Linkage Grant Scheme, Grant number LP0347301. In vivo assays were approved and conducted according to application No. 17/02 of the Institute for Medical and Veterinary Science Animal Ethics Committee. The authors would like to acknowledge the support of the Centre for Environmental Risk Assessment and Remediation (University of South Australia), Centre for Pharmaceutical Studies (University of South Australia), and the Institute for Medical and Veterinary Science for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Rees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rees, M., Sansom, L., Rofe, A. et al. Principles and application of an in vivo swine assay for the determination of arsenic bioavailability in contaminated matrices. Environ Geochem Health 31 (Suppl 1), 167–177 (2009). https://doi.org/10.1007/s10653-008-9237-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-008-9237-y

Keywords

Navigation