Skip to main content
Log in

Establishing morpho-dynamic baseline for flow-sediment management of a tidal river in the Ganges–Brahmaputra–Meghna Delta system through field measurement

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

In tidal environments, implementation of sustainable erosion management and land reclamation programs demands prior understanding of morphodynamic baseline. To address this, detailed field measurements along a tidal reach of the Pyra river in the Ganges–Brahmaputra–Meghna (GBM) system followed by systematic evaluation of associated flow-sediment parameters are presented here. Different sensors such as Eco-sounder, ADCP, OBS, and GPS coupled with total station were deployed to measure the spatial and temporal nature of flow and sediment transport related parameters. The measurements reveal that the tidal amplitude varies between 1.25 to 2.5 m (daily) and 1 to 1.25 m (seasonally), while, the maximum ebb and flood discharges varies between 3640–3860 m3/s and 2500–3060 m3/s respectively, peak ebb and flood velocities varies between 0.62–0.64 m/s and 0.38–0.45 m/s respectively with ebb period 8 h and flood period 4 h. Accordingly, the estimated bed shear velocity (5–8 cm/s), is found greater than threshold for erosion and suspension (1.2–1.3 cm/s for bed materials and 0.80–0.82 cm/s for bank materials respectively). Further, the measured SSC varies between 725 and 750 mg/l during ebb and 480–540 mg/l during flood. The above baseline data revealed the site as ebb dominating and hence in every cycle, the net residual current and sediment moves towards the seaward direction, and hence, sediment trapping potential will be higher during ebb phase. These findings will be useful to devise effective sediment management strategy for tidal river and to calibrate and validate related numerical models within the GBM system.

Plain language summary

  • Stronger fluid force causes significant erosion and suspension of very fine bed and bank materials and moves mostly as suspended load.

  • Erosion > deposition in a tidal cycle and net undeposited sediment transport occurs in seaward direction as the site is ebb dominated.

  • Erosion management and land reclamation strategy may be achieved by managing this sediment through appropriate structural intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The first author is in possession with all original data which may be provided when required and asked by the appropriate authority.

References

  1. Chen D, Zheng J, Zhang C, Guan D, Li Y, Wang Y (2021) Critical shear stress for erosion of sand-mud mixtures and pure mud. Front Mar Sci 8:713039. https://doi.org/10.3389/fmars.2021.713039

    Article  Google Scholar 

  2. Guo L, Brand M, Sanders BF, Foufoula-Georgiou E, Stein ED (2018) Tidal asymmetry and residual sediment transport in a short tidal basin under sea level rise. Adv Water Resour 121(June):1–8. https://doi.org/10.1016/j.advwatres.2018.07.012

    Article  Google Scholar 

  3. Wang P (2012) Principles of sediment transport applicable in tidal environments. In: Davis R Jr, Dalrymple R (eds) Principles of Tidal Sedimentology. Springer, Dordrecht, pp 19–34. https://doi.org/10.1007/978-94-007-0123-6_2

    Chapter  Google Scholar 

  4. van Rijn LC (1984) Sediment transport II: suspended load transport. J Hydraul Eng 110(11):1613–1641. https://doi.org/10.1061/(ASCE)0733-9429

    Article  Google Scholar 

  5. van Rijn LC (2022) Simple general formulae for sand transport in rivers, estuaries and coastal waters. (www.leovanrijn-sediment.com). Accessed February 2022

  6. Goodbred Jr SL, Saito Y (2012) Tide-dominated deltas. In: Davis Jr RA, Dalrymple RW (Eds) Principles of Tidal Sedimentology, pp. 129–149. https://doi.org/10.1007/978-94-007-0123-6_7

  7. Yoon B II, Woo S-B (2013) Tidal asymmetry and flood/ebb dominance around the Yeomha channel in the Han River Estuary. South Korea J Coastal Res, Special Issue 65(sp2):1242–1246. https://doi.org/10.2112/SI65-210.1

    Article  Google Scholar 

  8. Islam MK, Rahman MM (2022) A simplified concept to test erosion or sedimentation potential along a tidal river in the Ganges-Brahmaputra–Meghna Delta. J Geosci Environ Protect 10:82–100. https://doi.org/10.4236/gep.2022.104006

    Article  Google Scholar 

  9. van Wijngaarden M, Venema LB, De Meijer RJ, Zwolsman JJG, Van Os B, Gieske JMJ (2002) Radiometric sand-mud characterisation in the Rhine-Meuse estuary, Part A: fingerprinting. Geomorphology 43:87–101

    Article  Google Scholar 

  10. van Ledden, M (2002) A process-based sand-mud model. In: Winterwerp JC, Kranenburg C (eds), Fine sediment dynamics in the marine environment - Proc. In Mar. Science 5, Amsterdam: Elsevier, pp. 577–594, ISBN: 0-444-51136–9

  11. van Ledden, M (2003) Sand-mud segregation in estuaries and tidal basins. Ph.D. Thesis, Delft University of Technology, The Netherlands, Report No. 03–2, ISSN 0169-6548, pp. 217

  12. Deng Z, He Q, Manning AJ, Chassagne C (2023) A laboratory study on the behavior of estuarine sediment flocculation as function of salinity, EPS and living algae. Mar Geol 459:107029–107029. https://doi.org/10.1016/j.margeo.2023.107029

    Article  Google Scholar 

  13. Bisschop F, Miedema SA, Visser PJ, Keetels GH, van Rhee C (2016) Experiments on the pickup flux of sand at high flow velocities. J Hydraul Eng 142(7):04016013. https://doi.org/10.1061/(ASCE)hy.1943-7900.0001142

    Article  Google Scholar 

  14. Waeles B, Le Hir P, Lesueur P (2008) A 3D morphodynamic process-based modelling of a mixed sand/mud coastal environment: the Seine Estuary, France. In: Kudusa T, Yamanishi H, Spearman J, Galiani JZ (Eds), Sediment and Ecohydraulics - Proc. in Marine Science 9, Amsterdam: Elsevier, pp. 477–498, ISBN: 978-0-444-53184-1.

  15. Eisma D (1986) Flocculation and de-flocculation of suspended matter in estuaries. Neth J Sea Res 20(2/3):183–199. https://doi.org/10.1016/0077-7579(86)90041-4

    Article  Google Scholar 

  16. Manning AJ, Baugh JV, Spearman J, Whitehouse RJS (2010) Flocculation settling characteristics of mud: sand mixtures. Ocean Dyn. https://doi.org/10.1007/s10236-009-0251-0

    Article  Google Scholar 

  17. Soulsby RL, Manning AJ, Spearman J, Whitehouse RJS (2013) Settling velocity and mass settling flux of flocculated estuarine sediments. Mar Geol. https://doi.org/10.1016/j.margeo.2013.04.006

    Article  Google Scholar 

  18. Smith SJ, Friedrichs CT (2015) Image processing methods for in situ estimation of cohesive sediment floc size, settling velocity, and density. Limnol Oceanogr Methods 13:250–264

    Article  Google Scholar 

  19. Smith SJ, Friedrichs CT (2011) Size and settling velocities of cohesive flocs and suspended sediment aggregates in a trailing suction hopper dredge plume. Cont Shelf Res 31:S50-63. https://doi.org/10.1016/j.csr.2010.04.002

    Article  Google Scholar 

  20. Spearman J, Manning AJ (2008) On the significance of mud transport algorithms for the modelling of intertidal flats. In: Kudusa T, Yamanishi H, Spearman J, Gailani JZ (Eds). Sediment and Ecohydraulics - Proc. in Marine Science 9, Amsterdam: Elsevier. pp. 411–430, ISBN: 978-0-444-53184-1

  21. Rahman MM, Haque A, Nicholls RJ et al (2022) Sustainability of the coastal zone of the Ganges-Brahmaputra-Meghna delta under climatic and anthropogenic stresses. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2022.154547

    Article  Google Scholar 

  22. Raff JL, Goodbred SL, Pickering JL et al (2023) Sediment delivery to sustain the Ganges-Brahmaputra delta under climate change and anthropogenic impacts. Nat Commun 14:2429. https://doi.org/10.1038/s41467-023-38057-9

    Article  CAS  Google Scholar 

  23. Jana R, Cox JR, Paauw M, Nienhuis JH et al (2022) A global synthesis of the effectiveness of sedimentation-enhancing strategies for river deltas and estuaries. Global Planet Change. https://doi.org/10.1016/j.gloplacha.2022.103796

    Article  Google Scholar 

  24. Islam MK, Al Kibriya N, Dustegir MM (2018) Impact analysis of sand dredging from alluvial tidal river. E3S Web Conf 40:13036. https://doi.org/10.1051/e3sconf/20184003036

    Article  Google Scholar 

  25. Dankers PJT, Sills GC, Winterwerp JC (2007) On the hindered settling of highly concentrated mud-sand mixtures. In: Kudusa T, Yamanishi H, Spearman J, Gailani JZ (Eds), Sediment and Ecohydraulics - Proc. in Marine Science, INTERCOH 2005, Amsterdam: Elsevier, pp. 255–274

  26. Spearman JR, Manning AJ, Whitehouse RJS (2011) The settling dynamics of flocculating mud: sand mixtures: part 2 – Numerical modelling. Ocean Dyn. https://doi.org/10.1007/s10236-011-0385-8

    Article  Google Scholar 

  27. Manning AJ, Schoellhamer DH (2013) Factors controlling floc settling velocity along a longitudinal estuarine transect. Marine Geol, San Francisco Bay Special Issue. https://doi.org/10.1016/j.margeo.2013.04.006

    Article  Google Scholar 

  28. Malarkey J, Baas JH, Hope JA, Aspden RJ, Parsons DR, Peakall J, Paterson DM, Schindler RJ, Ye L, Lichtman ID, Bass SJ, Davies AG, Manning AJ, Thorne PD (2015) The pervasive role of biological cohesion in bedform development. Nat Commun. https://doi.org/10.1038/ncomms7257

    Article  Google Scholar 

  29. Paterson DM, Hagerthey SE (2001) Microphytobenthos in constrasting coastal ecosystems: biology and dynamics. In: Reise K (Eds), Ecological comparisons of sedimentary shores. Ecological studies, vol 151. Springer, Berlin and Heidelberg. pp, 105–125. https://doi.org/10.1007/978-3-642-56557-1_6

  30. Tolhurst, T.J., Gust. G. and Paterson, D.M (2002) The influence on an extra-cellular polymeric substance (EPS) on cohesive sediment stability. In: Winterwerp JC, Kranenburg C (Eds), Fine Sediment Dynamics in the Marine Environment - Proc. In Marine Science 5, Amsterdam: Elsevier, pp. 409–425

  31. Folk R (1974) Petrology of sedimentary rocks: Austin. Texas, Hemphill, 182

  32. van Rijn LC (2020) Erodibility of mud-sand bed mixtures. J Hydraul Eng 146(1):04019050. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001677

    Article  Google Scholar 

  33. Bricker JD, Inagaki S, Monismith SG (2005) Bed drag coefficient variability under wind waves in a tidal estuary. J Hydraul Eng 131(6):497–508. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:6(497)

    Article  Google Scholar 

  34. van Rijn LC (1984) Sediment transport, part I: bed load transport. J Hydraul Eng 110(10):1431–1456. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431)

    Article  Google Scholar 

  35. Wilcock PR (1993) Critical shear stress of natural sediments. J Hydraul Eng 119(4):491–505. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:4(491)

    Article  Google Scholar 

  36. Pu JH, Lim SY (2013) Efficient numerical computation and experimental study of temporally long equilibrium scour development around abutment. Environ Fluid Mech 14(1):69–86. https://doi.org/10.1007/s10652-013-9286-3

    Article  Google Scholar 

  37. Pu JH, Hussain A, Guo Y-K, Vardakastanis N, Hanmaiahgari PR, Lam D (2019) Submerged flexible vegetation impact on open channel flow velocity distribution: an analytical modelling study on drag and friction. Water Sci Eng 12(2):121–128. https://doi.org/10.1016/j.wse.2019.06.003

    Article  Google Scholar 

  38. Pu JH, Pandey M, Hanmaiahgari PR (2020) Analytical modelling of sidewall turbulence effect on stream wise velocity profile using 2D approach: a comparison of rectangular and trapezoidal open channel flows. J Hydro-Environ Res 32:17–25. https://doi.org/10.1016/j.jher.2020.06.002

    Article  Google Scholar 

  39. Pu JH (2021) Velocity profile and turbulence structure measurement corrections for sediment transport-induced water-worked bed. Fluids (MDPI) 6(2):1–11. https://doi.org/10.3390/fluids6020086

    Article  CAS  Google Scholar 

  40. Khan MA, Sharma N, Pu J, Alfaisal FM, Alam S, Khan WA (2022) Analysis of turbulent flow structure with its fluvial processes around mid-channel bar. Sustainability (MDPI) 392(1):24. https://doi.org/10.3390/su14010392

    Article  CAS  Google Scholar 

  41. Pandey M, Masoud K, Jamei M, Malik A, Pu JH (2023) A comprehensive experimental and computational investigation on estimation of scour depth at bridge abutment: emerging ensemble intelligent systems. Water Res Manag. https://doi.org/10.1007/s11269-023-03525-w

    Article  Google Scholar 

  42. Ikani N, Pu JH, Taha T, Hanmaiahgarib PR, Penna N (2023) Bursting phenomenon created by bridge piers group in open channel flow. Environ Fluid Mech 23:125–140

    Article  Google Scholar 

  43. Shiono’ K, Knight DW (1991) Turbulent open-channel flows with variable depth across the channel. J Fluid Mech 222:617–664

    Article  Google Scholar 

  44. Cheng NS (1997) A simplified settling velocity formula for sediment particle. J Hydraul Eng, ASCE 123(2):149–152. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:2(149)

    Article  Google Scholar 

  45. Soulsby R (1997) Dynamics of marine sands. I Heron Quay, London E14 4JD: T. Telford London

  46. Manning AJ, Dyer KR (2007) Mass settling flux of fine sediments in Northern European estuaries: measurements and predictions. Mar Geol 245:107–122. https://doi.org/10.1016/j.margeo.2007.07.005

    Article  Google Scholar 

  47. Dyer KR, Bale AJ, Christie MC, Feates N, Jones S, Manning AJ (2002) The turbidity maximum in a mesotidal estuary, the Tamar Estuary, UK. Part I: Dynamics of suspended sediment. In: Winterwerp JC, Kranenburg C, (Eds.), Fine Sediment Dynamics in the Marine Environment - Proceedings in Marine Science5, Amsterdam: Elsevier, pp. 203–218, ISBN: 0-444-51136-9

  48. Spencer KL, Wheatland JAT, Bushby AJ, Carr SJ, Droppo IG, Manning AJ (2021) A structure–function based approach to floc hierarchy and evidence for the non-fractal nature of natural sediment flocs. Nature - Scientific Reports 11:14012. https://doi.org/10.1038/s41598-021-93302-9

    Article  CAS  Google Scholar 

  49. Parsons DR, Schindler RJ, Hope JA et al (2016) The role of biophysical cohesion on subaqueous bed form size. Geophys Res Lett. https://doi.org/10.1002/2016GL067667

    Article  Google Scholar 

  50. van Leussen, W (1994) Estuarine macroflocs and their role in fine-grained sediment transport. Ph.D. Thesis, University of Utrecht, The Netherlands, 488 pp.

  51. Chassagne C (2019) Introduction to colloid science. Delft Academic Press, Delft

    Google Scholar 

  52. Manning AJ, Baugh JV, Spearman JR, Pidduck EL, Whitehouse RJS (2011) The settling dynamics of flocculating mud: sand mixtures: Part 1 – Empirical algorithm development. Ocean Dynamics, INTERCOH 2009 special issue, https://doi.org/10.1007/s10236-011-0394-7.

  53. Winterwerp JC, Manning AJ, Martens C, de Mulder T, Vanlede J (2006) A heuristic formula for turbulence-induced flocculation of cohesive sediment. Estuarine, Coast Shelf Sci 68:195–207

    Article  Google Scholar 

  54. Manning AJ, Bass SJ, Dyer KR (2006) Preliminary findings from a study of the upper reaches of the Tamar Estuary, UK, throughout a complete tidal cycle: Part II. In-situ floc spectra observations. In: Maa JPY, Sanford LP, Schoellhamer DH (Eds) Coastal and Estuarine Fine Sediment Processes - Proceedings in Marine Science 8, Amsterdam: Elsevier, pp. 15–33. https://doi.org/10.1016/S1568-2692(07)80004-0

  55. Rouse H (1937) Nomogram for the settling velocity of spheres. In: Division of geology and geography. Exhibit D of the report of the commission on sedimentation, 1936–1937. National Research Council, Washington, D.C., pp. 57–64

  56. Cooper JR, Tait SJ (2010) Examining the physical components of boundary shear stress for water-worked gravel deposits. Earth Surf Proc Land 35(10):1240–1246. https://doi.org/10.1002/esp.2020

    Article  Google Scholar 

  57. Pu JH, Wei J, Yuefei Huang Y (2017) Velocity distribution and 3D turbulence characteristic analysis for flow over water-worked rough bed. Water (MDPI) 9(668):1–13

    Google Scholar 

  58. Pu JH (2018) Turbulent rectangular compound open channel flow study using multi-zonal approach. Environ Fluid Mech 19(3):785–800. https://doi.org/10.1007/s10652-018-09655-9

    Article  CAS  Google Scholar 

  59. Allen JRL (1968) The nature and origin of bed-form hierarchies. Sedimentology 10(3):161–182. https://doi.org/10.1111/j.1365-3091.1968.tb01110.x

    Article  Google Scholar 

  60. Schindler RJ, Parsons DR, Ye L, Hope JA, Baas JH et al (2015) Sticky stuff: redefining bedform prediction in modern and ancient environments. Geology. https://doi.org/10.1130/G36262.1

    Article  Google Scholar 

  61. Alebregtse NC, de Swart HE (2014) Effect of a secondary channel on the non-linear tidal dynamics in a semi-enclosed channel: a simple model. Ocean Dyn 64:573–585. https://doi.org/10.1007/s10236-014-0690-0

    Article  Google Scholar 

  62. Spencer KL, Manning AJ, Droppo IG, Leppard GG, Benson T (2010) Dynamic interactions between cohesive sediment tracers and natural mud. J Soils Sed 10(7):1410–1414. https://doi.org/10.1007/s11368-010-0291-6

    Article  CAS  Google Scholar 

  63. Rahman MM, Shampa-Haque A, Nakagawa H et al (2023) Sediment management using bandal-like structures as nature-based solution. J Environ Fluid Mech. https://doi.org/10.1007/s10652-023-09945-x

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Bangladesh Army who accepted us to work in this field. We also acknowledge the contribution of Survey of Bangladesh (SoB), Institute of Water and Flood Management (IWFM), BUET, Military Institute of Science and Technology (MIST), and the field workers and technicians for their cooperation in data collection, testing and other necessary works.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Md. Kabirul Islam. The first draft of the manuscript was written by Md. Kabirul Islam. Both authors commented on previous versions of the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Md. Kabirul Islam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.K., Rahman, M.M. Establishing morpho-dynamic baseline for flow-sediment management of a tidal river in the Ganges–Brahmaputra–Meghna Delta system through field measurement. Environ Fluid Mech (2024). https://doi.org/10.1007/s10652-024-09985-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10652-024-09985-x

Keywords

Navigation