Skip to main content
Log in

Efficient numerical computation and experimental study of temporally long equilibrium scour development around abutment

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

For the abutment bed scour to reach its equilibrium state, a long flow time is needed. Hence, the employment of usual strategy of simulating such scouring event using the 3D numerical model is very time consuming and less practical. In order to develop an applicable model to consider temporally long abutment scouring process, this study modifies the common approach of 2D shallow water equations (SWEs) model to account for the sediment transport and turbulence, and provides a realistic approach to simulate the long scouring process to reach the full scour equilibrium. Due to the high demand of the 2D SWEs numerical scheme performance to simulate the abutment bed scouring, a recently proposed surface gradient upwind method (SGUM) was also used to improve the simulation of the numerical source terms. The abutment scour experiments of this study were conducted using the facility of Hydraulics Laboratory at Nanyang Technological University, Singapore to compare with the presented 2D SGUM–SWEs model. Fifteen experiments were conducted with their scouring flow durations vary from 46 to 546 h. The comparison shows that the 2D SGUM–SWEs model gives good representation to the experimental results with the practical advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

c :

Wave celerity

C :

Flux averaged volumetric sediment concentration

\(C_{\mathrm{E}}\) :

Equilibrium sediment concentration

\(C_{\mathrm{FL}}\) :

Courant number

\(d_d\) :

Sediment median diameter

\(d_\mathrm{f}\) :

Flow depth in floodplain

\(d_\mathrm{m}\) :

Flow depth in main channel

\(d_\mathrm{s}\) :

Scour depth

\(d_\mathrm{sc}\) :

Sediment deposition rate

\(d_\mathrm{se}\) :

Equilibrium scouring depth

\(e_\mathrm{sc}\) :

Sediment erosion rate

g :

Gravitational acceleration

h :

Water depth

i :

Space step

k :

Flow energy

L :

Abutment length

\(l_\mathrm{A}\) :

Dimensionless adaptation length scale

m :

Last time space

n :

Manning’s friction coefficient

N :

Time step

Q :

Resultant velocity

\(Q_\mathrm{fm}\) :

Discharge from magnetic flow metre

\(Q_\mathrm{vel}\) :

Discharge obtained from integration of ADV point-measured velocities

s :

wave speed

\(S_\mathrm{f}\) :

Friction/energy slope of flow

\(S_\mathrm{o}\) :

Bed slope

\(s_\mathrm{s}\) :

Sediment specific density

t :

Time domain

\(t_\mathrm{actual}\) :

Actual scouring time run for an experiment

\(t_\mathrm{e}\) :

Equilibrium scouring time

u :

Depth averaged flow velocity in streamwise direction

\(U_\mathrm{f}\) :

Flow velocity at flood plain

\(U_{\mathrm{m}}\) :

Flow velocity at main channel

\(u_\mathrm{s}\) :

Shear velocity

v :

Depth averaged flow velocity in lateral direction

\(w_\mathrm{V}\) :

Sediment fall velocity

x :

Spatial-longitudinal domain

y :

Spatial-transverse domain

\(z_\mathrm{b}\) :

Mobile bed elevation

\(\nabla \) :

Gradient operator

\(\varepsilon \) :

Flow energy dissipation

\(\lambda \) :

Sediment bed porosity

\(\nu _\mathrm{t}\) :

Depth averaged turbulent viscosity

\(\varOmega \) :

Computational cell area

\(\phi \) :

Flow geopotential

\(\Pi \) :

Slope limiter

\(\rho _\mathrm{s}\) :

Density of sediment

\(\rho _\mathrm{w}\) :

Density of water

\(\sigma _\mathrm{g}\) :

Geometric standard deviation of sediment size

L:

Left region

R:

Right region

*:

Star region

ADV:

Acoustic Doppler velocimeter

FV:

Finite volume

HLLC:

Harten Lax van Leer-contact

MUSCL:

Monotonic upwind scheme for conservative laws

NS:

Navier Stokes

SCC:

Sediment transport continuity-concentration

SGUM:

Surface gradient upwind method

SWEs:

Shallow water equations

References

  1. Yin J, Chen Y, Falconer RA (2003) Steady shallow-water current and solute transport around a semi-conical headland. Environ Fluid Mech 3(3):221–234

    Article  Google Scholar 

  2. Souhar O, Faure J-B, Paquier A (2007) Automatic sensitivity analysis of a finite volume model for two-dimensional shallow water flows. Environ Fluid Mech 7(4):303–315

    Article  Google Scholar 

  3. Ettema R, Yoon B, Nakato T, Muste M (2004) A review of scour conditions and scour-estimation difficulties for bridge abutments. KSCE J Civil Eng 8(6):643–650

    Article  Google Scholar 

  4. Dey S, Barbhuiya AK (2005) Time variation of scour at abutments. J Hydraul Eng 131(1):11–23

    Article  Google Scholar 

  5. Yanmaz AM, Kose O (2007) Time-wise variation of scouring at bridge abutments. Sadhana 32(3):199–213

    Article  Google Scholar 

  6. Ballio F, Radice A, Dey S (2010) Temporal scales for live-bed scour at abutments. J Hydraul Eng 136(7):395–402

    Article  Google Scholar 

  7. Lim SY (1997) Equilibrium clear-water scour around an abutment. J Hydraul Eng 123(3):237–243

    Article  Google Scholar 

  8. Lu J-Y, Shi Z-Z, Hong J-H, Lee J-J, Raikar RV (2011) Temporal variation of scour depth at nonuniform cylindrical piers. J Hydraul Eng 137(1):45–56

    Article  Google Scholar 

  9. Nugroho J (2006) Flow distribution and scouring around abutments in two-stage channels. Ph.D Dissertation, Nanyang Technological University, Singapore

  10. Pu JH (2008) Efficient finite volume numerical modelling and experimental study of 2D shallow water free surface turbulent flows. Ph.D Dissertation, University of Bradford, Bradford, UK

  11. Liu X, Garcia MH (2008) Three-dimensional numerical model with free water surface and mesh deformation for local sediment scour. J Hydraul Eng 134(4):203–217

    Google Scholar 

  12. Bihs H, Olsen NRB (2011) Numerical modeling of abutment scour with the focus on the incipient motion on sloping beds. J Hydraul Eng 137(10):1287–1292

    Article  Google Scholar 

  13. Sladkevich M, Militeev AN, Rubin H, Kit E (2000) Simulation of transport phenomena in shallow aquatic environment. J Hydraul Eng 126(2):123–136

    Article  Google Scholar 

  14. Kimura I, Uijttewaal WSJ, Hosoda T, Ali MS (2009) URANS computations of shallow grid turbulence. J Hydraul Eng 135(2):118–131

    Article  Google Scholar 

  15. Mahdizadeh H, Stansby PK, Rogers BD (2012) Flood wave modeling based on a two-dimensional modified wave propagation algorithm coupled to a full-pipe network solver. J Hydraul Eng 138(3):247–259

    Article  Google Scholar 

  16. Cao Z, Pender G, Wallis S, Carling P (2004) Computational dam-break hydraulics over erodible sediment bed. J Hydraul Eng 130(7):689–703

    Article  Google Scholar 

  17. Wu W, Wang SSY (2007) One-dimensional modeling of dam-break flow over movable beds. J Hydraul Eng 133(1):48–58

    Article  Google Scholar 

  18. Wu W, Wang SSY (2008) One-dimensional explicit finite-volume model for sediment transport with transient flows over movable beds. J Hydraul Res 46(1):87–98

    Article  Google Scholar 

  19. Xia J, Lin B, Falconer RA, Wang G (2010) Modeling dam-break flows over mobile beds using a 2D coupled approach. Adv Water Resour 33(2):171–183

    Article  Google Scholar 

  20. Cao Z, Hu P, Pender G (2011) Multiple time scales of fluvial processes with bed load sediment and implications for mathematical modeling. J Hydraul Eng 137(3):267–276

    Article  Google Scholar 

  21. Younus M, Chaudhry MH (1994) A depth-averaged \(\text{ k- }{\varepsilon }\) turbulence model for the computation of free-surface flow. J Hydraul Res 32(1):415–444

    Article  Google Scholar 

  22. Cea L, Puertas J, Vazquez-Cendon ME (2007) Depth average modelling of turbulent shallow water flow with wet-dry fronts. Arch Comput Method Eng 14(3):303–341

    Article  Google Scholar 

  23. Pu JH, Cheng N-S, Tan SK, Shao S (2012) Source terms treatment of SWEs using surface gradient upwind method. J Hydraul Res 50(2):145–153

    Article  Google Scholar 

  24. Ferreira R, Leal J (1998) 1D mathematical modelling of the instantaneous dam-break flood wave over mobile bed: application of TVD and flux-splitting schemes. In: Proceedings of European concerted action on dam-break modelling, Munich, Germany, pp 175–222

  25. Yang CT, Greimann BP (1999) Dambreak unsteady flow and sediment transport. In: Proceedings of European concerted action on dam-break modelling, Zaragoza, Spain, pp 327–365

  26. Brufau P, Garcia-Navarro P, Ghilardi P, Natale L, Savi F (2000) 1D mathematical modelling of debris flow. J Hydraul Res 38(6):435–446

    Article  Google Scholar 

  27. Zhou J, Lin B (1998) One-dimensional mathematical model for suspended sediment by lateral integration. J Hydraul Eng 124(7):712–717

    Article  Google Scholar 

  28. Valiani A, Caleffi V (2001) Dam break modeling for sediment laden flows. In: Proceedings of the 2001 international symposium on environmental hydraulics. Arizona, USA, pp 1–6

  29. Armanini A, Di Silvio G (1988) A one-dimensional model for the transport of sediment mixture in non-equilibrium conditions. J Hydraul Res 26(3):275–292

    Article  Google Scholar 

  30. Pu JH, Shao S, Huang Y (2013) Turbulence studies of shallow open channel flows using numerical and experimental approaches. J Hydro-environ Res 1–11. doi:http://dx.doi.org/10.1016/j.jher.2012.12.001

  31. Toro EF (1999) Riemann solvers and numerical methods for fluid dynamics: a practical introduction, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  32. Hu K, Mingham CG, Causon DM (2006) A mesh patching method for finite volume modelling of shallow water flow. Int J Num Meth Fluids 50(11):1381–1404

    Article  Google Scholar 

  33. Mingham CG, Causon DM (2000) Calculation of unsteady bore diffraction using a high resolution finite volume method. J Hydraul Res 38(1):49–56

    Article  Google Scholar 

  34. Sanders BF, Green CL, Chu AK, Grant SB (2001) Case study: modeling tidal transport of urban runoff in channels using the finite-volume method. J Hydraul Eng 127(10):795–804

    Article  Google Scholar 

  35. Lim SY, Nugroho J (2004) Observations on flow field around an abutment in a two-stage channel. In: Proceedings of 2nd international conference on scour and erosion, Singapore, pp 156–164

  36. Melville BW, Chiew YM (1999) Time scale for local scour at bridge piers. J Hydraul Eng 125(1):59–65

    Article  Google Scholar 

  37. Coleman SE, Lauchlan CS, Melville BW (2003) Clear water scour development at bridge abutments. J Hydraul Res 41(5):521–531

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Joko Nugroho for providing his Ph.D. experimental data (under the supervision of the second author Dr. Siow Yong Lim).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaan Hui Pu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pu, J.H., Lim, S.Y. Efficient numerical computation and experimental study of temporally long equilibrium scour development around abutment. Environ Fluid Mech 14, 69–86 (2014). https://doi.org/10.1007/s10652-013-9286-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-013-9286-3

Keywords

Navigation