Skip to main content

Advertisement

Log in

Uncertainty quantification of inflow on passive scalar dispersion in an urban environment

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Risk assessment, city planning, and emergency response are a few examples of potential applications of numerical simulations of scalar dispersion in urban environments. The complex flow fields and scalar dispersion are determined by the building layout and prevailing meteorological conditions that are highly uncertain. While the fidelity of a numerical model is important in providing an accurate prediction of flow and scalar fields, propagating the uncertain input through numerical models is imperative in those applications. However, it is uncommon to quantify input uncertainties due to expensive computational cost of high fidelity simulations such as large eddy simulations (LES) and Reynolds-averaged Navier–Stokes (RANS). In this work, the uncertain meteorological quantities viz., wind speed and its direction from field measurements are taken as inputs to RANS simulations that use realizable \(k-\varepsilon\) turbulence model, to investigate their effects on passive scalar dispersion in central London. The mean wind and scalar quantities from RANS are initially validated with wind-tunnel data and compared to large eddy simulations (LES). For comparison with field measurements, the deduced probability density function (pdf) for wind speed and direction from the field are used as inputs for RANS simulations. For a 3-min averaged concentration at a specific receiver location, LES with unsteady wind inputs showed better performance than LES with mean wind input and RANS whereas for 30-min averaged concentration at various receiver locations, performance measures indicated that RANS is better than LES. The latter certainly suggests the importance of considering such uncertainties. The flow variability in every street is quantified using RANS simulations. This demonstrated that approximations used in a fast, low-order street network model may not be necessarily valid for every street of heterogeneous urban canopies, which in turn affects scalar prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Ddata availability

The data will be provided upon request.

Code availability

The code used is opensource software.

Abbreviations

C :

Concentration of scalar

\(C^*\) :

Normalised scalar concentration

h :

Building height

\(h_m\) :

Mean building height

k :

Turbulent kinetic energy

\(k_m\) :

Molecular diffusivity

\(k_t\) :

Turbulent diffusivity

\(M_\ell\) :

Reference mesh where \(\ell =0,1,2\) in increasing order of mesh resolution

\(\mathcal {N}\) :

Sample size

p :

Pressure

\(Q_S\) :

Volumetric source

\(R_n\) :

Receiver locations

s :

Street index

\(S_m\) :

Source locations

\(Sc_m\) :

Molecular Schmidt number

\(Sc_t\) :

Turbulent Schmidt number

t :

Time

\(\textbf{u}\) :

Velocity magnitude

\(u_*\) :

Surface friction velocity

\(u_d\) :

Bulk exchange mass velocity

\(\textbf{u}_{BT}\) :

\(\textbf{u}\) at BT tower height

\(\textbf{u}_{hm}\) :

\(\textbf{u}\) at mean building height

\(\textbf{u}_{ref}\) :

\(\textbf{u}\) at reference height

\(\textbf{u}_{s}\) :

Street channel velocity

\(\textbf{u}_{zmax}\) :

\(\textbf{u}\) at free stream height

\(\mathcal {V}_s\) :

Volume of street canyon, s

z :

Vertical coordinate or height from ground

\(z_0\) :

Aerodynamic roughness length

\(\epsilon\) :

Mesh convergence error

\(\varepsilon\) :

Turbulence dissipation rate

\(\kappa\) :

Von Karman constant

\(\nu\) :

Kinematic viscosity

\(\nu _t\) :

Turbulent viscosity

\(\rho\) :

Density

\(\sigma _w\) :

Standard deviation of the vertical velocity at roof level

\(\sigma _{\phi _{s}}\) :

Standard deviation of \(\langle \phi \rangle _{s}\) from \(\overline{\phi }_{s}\)

\(\varsigma _{s}\) :

Standard deviation of velocity magnitude in street s

\(\phi _{s}\) :

Velocity component of street, s where \(\phi = u,v,w\)

\(\overline{\varsigma }_{s}\) :

Ensemble average of \(\varsigma _{s}\)

\(\langle \phi \rangle _{s}\) :

Volume average of \(\phi_{s}\)

\(\overline{\phi }_{s}\) :

Ensemble average of \(\phi _{s}\)

\(\omega\) :

Specific dissipation rate

ANOVA:

Analysis of variance

BT:

British Telecom

CFD:

Computational fluid dynamics

CI:

Confidence interval

ClearfLo:

Clean Air for London

DNS:

Direct numerical simulations

LBM:

Lattice Boltzmann method

LES:

Large eddy simulations

LiDAR:

Light Detection and Ranging

MRI:

Magnetic resonance imaging

NAD:

Normalised absolute difference

NMSE:

Normalised mean square error

pdf:

Probablity density function

POD:

Proper orthogonal decomposition

QoI:

Quantities of interest

RANS:

Reynolds-Averaged Navier–Stokes

SDG:

Sustainable Development Goals

UQ:

Uncertainty quantification

VLES:

Very large eddy simulations

WCC:

Westminster City Council

AERMOD:

American Meteorological Society/Environmental Protection Agency Regulatory Model

CALPUFF:

California puff model

Dakota:

Design Analysis Kit for Optimization and Terascale Applications

DAPPLE:

Dispersion of air pollution and its penetration into the local environment

EPSRC:

Engineering and physical sciences research council

QUIC:

Quick Urban and Industrial Complex

References

  1. Adams B, Ebeida MM.S.and Eldred, Jakeman J, et al (2014) Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis version 6.7 Theory Manual. Sandia Technical Report SAND2014-4633, July https://dakota.sandia.gov/sites/default/files/docs/6.7/https://www.overleaf.com/project/6390585fa8af79090b800e62Theory-6.7.0.pdf

  2. Arnold S, ApSimon H, Barlow J et al (2004) Introduction to the DAPPLE air pollution project. Sci Total Environ 332:139–153. https://doi.org/10.1016/j.scitotenv.2004.04.020

    Article  Google Scholar 

  3. Balogun AA, Tomlin AS, Wood CR et al (2010) In-street wind direction variability in the vicinity of a busy intersection in central London. Bound-Layer Meteorol 136:489–513. https://doi.org/10.1007/s10546-010-9515-y

    Article  Google Scholar 

  4. Barlow J, Dobre A, Smalley RJ et al (2009) Referencing of street-level flows measured during the DAPPLE 2004 campaign. Atmos Environ 43(34):5536–5544. https://doi.org/10.1016/j.atmosenv.2009.05.021

    Article  Google Scholar 

  5. Blocken B, Vervoort R, van Hooff T (2016) Reduction of outdoor particulate matter concentrations by local removal in semi-enclosed parking garages: a preliminary case study for Eindhoven city center. J Wind Eng Ind Aerodyn 159:80–98. https://doi.org/10.1016/j.jweia.2016.10.008

    Article  Google Scholar 

  6. Bohnenstengel SI, Belcher SE, Aiken A et al (2015) Meteorology, air quality, and health in London: the ClearfLo project. Bull Am Meteorol Soc 96:779–804. https://doi.org/10.1175/BAMS-D-12-00245.1

    Article  Google Scholar 

  7. Carpentieri M, Robins AG, Baldi S (2009) Three-dimensional mapping of air flow at an urban canyon intersection. Bound-Layer Meteorol 133:277–296. https://doi.org/10.1007/s10546-009-9425-z

    Article  Google Scholar 

  8. Carpentieri M, Salizzoni P, Robins A et al (2012) Evaluation of a neighbourhood scale, street network dispersion model through comparison with wind tunnel data. Environ Model Softw 37:110–124. https://doi.org/10.1016/j.envsoft.2012.03.009

    Article  Google Scholar 

  9. Cimorelli A, Perry S, Venkatram A et al (2004) AERMOD: Description of model formulation. Technical Report, United States Environmental Protection Agency

  10. Coceal O, Goulart E, Branford S et al (2014) Flow structure and near-field dispersion in arrays of building-like obstacles. J Wind Eng Ind Aerodyn 125:52–68. https://doi.org/10.1016/j.jweia.2013.11.013

    Article  Google Scholar 

  11. Fellini S, Salizzoni P, Ridolfi L (2021) Vulnerability of cities to toxic airborne releases is written in their topology. Sci Rep. https://doi.org/10.1038/s41598-021-02403-y

    Article  Google Scholar 

  12. García-Sánchez C, Gorlé C (2018) Uncertainty quantification for microscale CFD simulations based on input from mesoscale codes. J Wind Eng Ind Aerodyn 176:87–97. https://doi.org/10.1016/j.jweia.2018.03.011

    Article  Google Scholar 

  13. García-Sánchez C, Van Tendeloo G, Gorlé C (2017) Quantifying inflow uncertainties in RANS simulations of urban pollutant dispersion. Atmos Environ 161:263–273. https://doi.org/10.1016/j.atmosenv.2017.04.019

    Article  Google Scholar 

  14. Grylls T, Le Cornec CMA, Salizzoni P et al (2019) Evaluation of an operational air quality model using large-eddy simulation. Atmos Environ X 3(100):041. https://doi.org/10.1016/j.aeaoa.2019.100041

    Article  Google Scholar 

  15. Hanna S, Chang J (2012) Acceptance criteria for urban dispersion model evaluation. Meteorol Atmos Phys 116:133–146. https://doi.org/10.1007/s00703-011-0177-1

    Article  Google Scholar 

  16. Hargreaves DM, Wright NG (2007) On the use of the \(k-\varepsilon\) model in commercial CFD software to model the neutral atmospheric boundary layer. J Wind Eng Ind Aerodyn 95:355–369. https://doi.org/10.1016/j.jweia.2006.08.002

    Article  Google Scholar 

  17. Hertwig D, Soulhac L, Fuka V et al (2018) Evaluation of fast atmospheric dispersion models in a regular street network. Environ Fluid Mech 18:1007–1044. https://doi.org/10.1007/s10652-018-9587-7

    Article  Google Scholar 

  18. Huang ZR, Zhang YJ, Wen YB et al (2022) Synoptic wind driven ventilation and far field radionuclides dispersion across urban block regions: effects of street aspect ratios and building array skylines. Sustain Cities Soc 78(103):606. https://doi.org/10.1016/j.scs.2021.103606

    Article  Google Scholar 

  19. Jurado X, Reiminger N, Vazquez J et al (2021) On the minimal wind directions required to assess mean annual air pollution concentration based on CFD results. Sustain Cities Soc 71(102):920. https://doi.org/10.1016/j.scs.2021.102920

    Article  Google Scholar 

  20. Keshavarzian E, Jin R, Dong K et al (2021) Effect of building cross-section shape on air pollutant dispersion around buildings. Build Environ 197(107):861. https://doi.org/10.1016/j.buildenv.2021.107861

    Article  Google Scholar 

  21. Lim H, Hertwig D, Grylls T et al (2022) Pollutant dispersion by tall buildings: laboratory experiments and Large-Eddy Simulation. Exp Fluids. https://doi.org/10.1007/s00348-022-03439-0

    Article  Google Scholar 

  22. Liu Z, Barlow JF, Chan PW et al (2019) A review of progress and applications of pulsed Doppler wind LiDARs. Remote Sens 11:2522. https://doi.org/10.3390/rs11212522

    Article  Google Scholar 

  23. Lucas DD, Gowardhan A, Cameron-Smith P et al (2016) Impact of meteorological inflow uncertainty on tracer transport and source estimation in urban atmospheres. Atmos Environ 143:120–132. https://doi.org/10.1016/j.atmosenv.2016.08.019

    Article  Google Scholar 

  24. Margheri L, Sagaut P (2016) A hybrid anchored-ANOVA-POD/Kriging method for uncertainty quantification in unsteady high-fidelity CFD simulations. J Comput Phys 324:137–173. https://doi.org/10.1016/j.jcp.2016.07.036

    Article  Google Scholar 

  25. OpenFOAM (2020) https://www.openfoam.com/news/main-news/openfoam-v20-12. Accessed Jan 2021

  26. Pardyjak E, Brown M (2003) QUIC-URB v.1.1: theory and users guide. Report LA-UR-07-3181. Los Alamos National Laboratory, Los Alamos, NM, USA

  27. Ricci A, Kalkman I, Blocken B et al (2020) Impact of turbulence models and roughness height in 3D steady RANS simulations of wind flow in an urban environment. Build Environ 171(106):617. https://doi.org/10.1016/j.buildenv.2019.106617

    Article  Google Scholar 

  28. Scire J, Strimaitis D, Yamartino R (2000) A user’s guide for CALPUFF dispersion model (Version 5). Technical Report, Earth Tech Inc URL http://www.src.com/calpuff/download/CALPUFF_UsersGuide.pdf

  29. Shim G, Prasad D, Elkins C et al (2019) 3D MRI measurements of the effects of wind direction on flow characteristics and contaminant dispersion in a model urban canopy. Environ Fluid Mech 19:851–878. https://doi.org/10.1007/s10652-019-09676-y

    Article  Google Scholar 

  30. Soulhac L, Salizzoni P, Cierco FX et al (2011) The model SIRANE for atmospheric urban pollutant dispersion; part I, presentation of the model. Atmos Environ 45(39):7379–7395. https://doi.org/10.1016/j.atmosenv.2011.07.008

    Article  Google Scholar 

  31. Soulhac L, Salizzoni P, Mejean P et al (2012) The model SIRANE for atmospheric urban pollutant dispersion; PART II, validation of the model on a real case study. Atmos Environ 49:320–337. https://doi.org/10.1016/j.atmosenv.2011.11.031

    Article  Google Scholar 

  32. Soulhac L, Salizzoni P, Mejean P et al (2013) Parametric laws to model urban pollutant dispersion with a street network approach. Atmos Environ 67:229–241. https://doi.org/10.1016/j.atmosenv.2012.10.053

    Article  Google Scholar 

  33. Soulhac L, Lamaison G, Cierco FX et al (2016) SIRANERISK: modelling dispersion of steady and unsteady pollutant releases in the urban canopy. Atmos Environ 140:242–260. https://doi.org/10.1016/j.atmosenv.2016.04.027

    Article  Google Scholar 

  34. Soulhac L, Nguyen C, Volta P et al (2017) The model SIRANE for atmospheric urban pollutant dispersion. PART III: validation against NO2 yearly concentration measurements in a large urban agglomeration. Atmos Environ 167:377–388. https://doi.org/10.1016/j.atmosenv.2017.08.034

    Article  Google Scholar 

  35. Tominaga Y, Iizuka S, Imano M et al (2013) Cross comparisons of CFD results of wind and dispersion fields for MUST experiment: evaluation exercises by AIJ. J Asian Archit Build Eng. https://doi.org/10.3130/jaabe.12.117

    Article  Google Scholar 

  36. United Nations (n.d.) Take action for the sustainable development goals - United Nations Sustainable Development. https://www.un.org/sustainabledevelopment/sustainable-development-goals/. Accessed 4 Aug 2022

  37. Volpiani PS, Meyer M, Franceschini L et al (2021) Machine learning-augmented turbulence modeling for RANS simulations of massively separated flows. Phys Rev Fluids 6(064):607. https://doi.org/10.1103/PhysRevFluids.6.064607

    Article  Google Scholar 

  38. Wang A, Fallah-Shorshani M, Xu J et al (2016) Characterizing near-road air pollution using local-scale emission and dispersion models and validation against in-situ measurements. Atmos Environ 142:452–464. https://doi.org/10.1016/j.atmosenv.2016.08.020

    Article  Google Scholar 

  39. Wieringa J (1992) Updating the Davenport roughhness classification. J Wind Eng Ind Aerodyn 41–44:357–368. https://doi.org/10.1016/0167-6105(92)90434-C

    Article  Google Scholar 

  40. Wise DJ, Boppana VBL, Li KW et al (2018) Effects of minor changes in the mean inlet wind direction on urban flow simulations. Sustain Cities Soc 37:492–500. https://doi.org/10.1016/j.scs.2017.11.041

    Article  Google Scholar 

  41. Wood C, Arnold SJ, Balogun AA et al (2009) Dispersion experiments in Central London: the 2007 DAPPLE project. Bull Am Meteor Soc 90:955–970. https://doi.org/10.1175/2009BAMS2638.1

    Article  Google Scholar 

  42. Xie ZT (2011) Modelling street-scale flow and dispersion in realistic winds-towards coupling with mesoscale meteorological models. Bound-Layer Meteorol 141:53–75. https://doi.org/10.1007/s10546-011-9629-x

    Article  Google Scholar 

  43. Xie ZT, Castro I (2006) LES and RANS for turbulent flow over arrays of wall mounted cubes. Flow Turbul Combust 76:291–312. https://doi.org/10.1007/s10494-006-9018-6

    Article  Google Scholar 

  44. Xie ZT, Castro IP (2009) Large-eddy simulation for flow and dispersion in urban streets. Atmos Environ 43:2174–2185. https://doi.org/10.1016/j.atmosenv.2009.01.016

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Zheng-Tong Xie of University of Southampton, U.K. and Prof. Alan G Robins of University of Surrey, U.K. for sharing DAPPLE geometry information.

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

BB: Conceptualization, Simulation, Data analysis, Methodology, Writing—draft, review & editing. VTN: Conceptualization, Methodology, Data analysis discussions, Writing—review & editing. DW: Geometry creation, Data analysis discussions, Writing—review. JL: Dakota testing, Data analysis discussion, Writing—review & editing.

Corresponding author

Correspondence to Bharathi Boppana.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Coordinates of source and receiver locations

Appendix A Coordinates of source and receiver locations

Table 3 The coordinates of the source and receiver locations shown in Fig. 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boppana, B., Nguyen, VT., Wise, D.J. et al. Uncertainty quantification of inflow on passive scalar dispersion in an urban environment. Environ Fluid Mech 23, 661–687 (2023). https://doi.org/10.1007/s10652-023-09927-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-023-09927-z

Keywords

Navigation