Skip to main content
Log in

Influence of non-erodible particles with multimodal size distribution on aeolian erosion of storage piles of granular materials

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Aeolian erosion of granular materials is investigated by means of a mathematical emission model and experimental wind tunnel measurements. Main model input data are: friction velocity, relationship between cover rate (CR) and eroded height (H) and particle properties (density, size distribution). It is proposed: (1) to evaluate the linearity of the relation between CR and H considering the presence of a multimodal distribution of particle sizes, (2) to validate the mathematical model with wind tunnel data, (3) to evaluate the protective effect of non-erodible particles and (4) to qualitatively evaluate the final stage of erosion through experimental photographs of the oblong stockpile. The relationship between CR and H may still be considered linear for the tested mixture of particles. The modelled emission, when compared with experimental data, showed that the physical tendency of the aeolian erosion phenomenon was well predicted. The model showed to be useful in comparative analysis between scenarios but not in absolute values due to errors found. It is valid for the monitoring of air quality degradation due to aeolian erosion of open yards of storage piles. Detailed analysis of emitted mass explained that the smallest diameters among the non-erodible particles create a less effective protection effect leading to higher emissions. The qualitative analysis of high-quality photographs of the experiments showed that the non-erodible particle agglomeration on the stockpile surface can be well explained if one evaluates simultaneously, on the pile, the angle of velocity vectors (which influences the threshold friction velocity value) and shear stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Adapted from Caliman [3])

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Badr T, Harion J-L (2005) Numerical modelling of flow over stockpiles: implications on dust emissions. Atmos Environ 39(30):5576–5584. https://doi.org/10.1016/j.atmosenv.2005.05.053

    Article  Google Scholar 

  2. Badr T, Harion J-L (2007) Effect of aggregate storage piles configuration on dust emissions. Atmos Environ 41(2):360–368. https://doi.org/10.1016/j.atmosenv.2006.07.038

    Article  Google Scholar 

  3. Caliman MFSC (2017) Influence of non-erodible particles on wind erosion. Doctoral thesis. Universidade Federal do Espírito Santo, Vitória, ES

  4. Cong X, Yang S, Cao S, Chen Z, Dai M, Peng S (2012) Effect of aggregate stockpile configuration and layout on dust emissions in an open yard. Appl Math Model 36(11):5482–5491. https://doi.org/10.1016/j.apm.2012.01.014

    Article  Google Scholar 

  5. Crawley D, Nickling W (2003) Drag partition for regularly-arrayed rough surfaces. Bound-Layer Meteorol 107(2):445–468. https://doi.org/10.1023/a:1022119909546

    Article  Google Scholar 

  6. Derakhshani SM, Schott DL, Lodewijks G (2013) Dust emission modelling around a stockpile by using computational fluid dynamics and discrete element method. AIP Conf Proc 1542(2013):1055–1058. https://doi.org/10.1063/1.4812116

    Article  Google Scholar 

  7. Descamps I, Harion J-L, Baudoin B (2005) Taking-off model of particles with a wide size distribution. Chem Eng Process 44(2):159–166. https://doi.org/10.1016/j.cep.2004.04.007

    Article  Google Scholar 

  8. Diego I, Pelegry A, Torno S, Toraño J, Menendez M (2009) Simultaneous CFD evaluation of wind flow and dust emission in open storage piles. Appl Math Model 33(7):3197–3207. https://doi.org/10.1016/j.apm.2008.10.037

    Article  Google Scholar 

  9. Dong Z, Wang H, Liu X, Wang X (2004) A wind tunnel investigation of the influences of fetch length on the flux profile of a sand cloud blowing over a gravel surface. Earth Surf Process Landf 29(13):1613–1626. https://doi.org/10.1002/esp.1116

    Article  Google Scholar 

  10. Faria R, Ferreira AD, Sismeiro JL, Mendes JCF, Sousa ACM (2011) Wind tunnel and computational study of the stoss slope effect on the aeolian erosion of transverse sand dunes. Aeol Res 3:303–314. https://doi.org/10.1016/j.aeolia.2011.07.004

    Article  Google Scholar 

  11. Ferreira AD, Pinheiro SR, Francisco SC (2013) Experimental and numerical study on the shear velocity distribution along one or two dunes in tandem. Environ Fluid Mech 13:557–570. https://doi.org/10.1007/s10652-013-9282-7

    Article  Google Scholar 

  12. Furieri B, Russeil S, Santos JM, Harion J-L (2013) Effects of non-erodible particles on aeolian erosion: wind-tunnel simulations of a sand oblong storage pile. Atmos Environ 79:672–680. https://doi.org/10.1016/j.atmosenv.2013.07.026

    Article  Google Scholar 

  13. Furieri B, Harion JL, Milliez M, Russeil S, Santos JM (2013) Numerical modelling of aeolian erosion over a surface with non-uniformly distributed roughness elements. Earth Surf Proc Land 39(2):156–166. https://doi.org/10.1002/esp.3435

    Article  Google Scholar 

  14. Furieri B, Santos JM, Russeil S (2014) Aeolian erosion of storage piles yard: contribution of the surrounding areas. Environ Fluid Mech 14:51–67. https://doi.org/10.1007/s10652-013-9293-4

    Article  Google Scholar 

  15. Gillette D, Stockton P (1989) The effect of nonerodible particles on wind erosion of erodible surfaces. J Geophys Res Atmos 94(D10):12885–12893. https://doi.org/10.1029/JD094iD10p12885

    Article  Google Scholar 

  16. Gillies J, Nickling W, King J (2007) Shear stress partitioning in large patches of roughness in the atmospheric inertial sublayer. Bound-Layer Meteorol 122(2):367–396. https://doi.org/10.1007/s10546-006-9101-5

    Article  Google Scholar 

  17. Gillies JA, Green H, McCarley-Holder G, Grimm S, Howard C, Barbieri N, Ono D, Schade T (2015) Using solid element roughness to control sand movement: Keeler Dunes, Keeler, California. Aeolian Res 18:35–46. https://doi.org/10.1016/j.aeolia.2015.05.004

    Article  Google Scholar 

  18. Hoonhout BM, De Vries S (2016) A process-based model for aeolian sediment transport and spatiotemporal varying sediment availability. J Geophys Res Earth Surf 121:1555–1575. https://doi.org/10.1002/2015JF003692

    Article  Google Scholar 

  19. Iversen J, Wang W, Rasmussen K, Mikkelsen H, Leach R (1991) Roughness element effect on local and universal saltation transport. In: Barndorff-Nielsen O, Willetts B (eds) Aeolian grain transport: acta mechanica supplementum, vol 2. Springer, Vienna, pp 65–75

    Chapter  Google Scholar 

  20. Iversen J, Rasmussen K (1994) The effect of surface slope on saltation threshold. Sedimentology 41(4):721–728. https://doi.org/10.1111/j.1365-3091.1994.tb01419.x

    Article  Google Scholar 

  21. Klose M, Shao Y, Li X, Zhang H, Ishizuka M, Mikami M, Leys JF (2014) Further development of a parametrization for convective turbulent dust emission and evaluation based on field observations. J Geophys Res Atmos 119(17):10441–10457. https://doi.org/10.1002/2014JD021688

    Article  Google Scholar 

  22. Kok J, Mahowald N, Fratini G, Gillies J, Ishizuka M, Leys J, Mikami M, Park M-S, Park S-U, Van Pelt R, Zobeck T (2014) An improved dust emission model—Part 1: model description and comparison against measurements. Atmos Chem Phys 14(23):13023–13041. https://doi.org/10.5194/acp-14-13023-2014

    Article  Google Scholar 

  23. Kurose R, Komori S (2001) Turbulence structure over a particle roughness. Int J Multiph Flow 27(4):673–683. https://doi.org/10.1016/S0301-9322(00)00044-6

    Article  Google Scholar 

  24. Lyles L, Allison B (1975) Wind erosion: the protective role of simulated standing stubble. Am Soc Agric Eng 19(1):61–64

    Article  Google Scholar 

  25. Marshall J (1971) Drag measurements in roughness arrays of varying density and distribution. Agric Meteorol 8:269–292. https://doi.org/10.1016/0002-1571(71)90116-6

    Article  Google Scholar 

  26. Marticorena B, Bergametti G (1995) Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J Geophys Res Atmos 100(D8):16415–16430. https://doi.org/10.1029/95JD00690

    Article  Google Scholar 

  27. Mckenna Neuman C, Nickling W (1995) Aeolian sediment flux decay: nonlinear behaviour on developing deflation lag surfaces. Earth Surf Proc Land 20(5):423–435. https://doi.org/10.1002/esp.3290200504

    Article  Google Scholar 

  28. Miri A, Dragovich D, Dong Z (2017) Vegetation morphologic and aerodynamic characteristics reduce aeolian erosion. Nat Sci Rep 7:12831. https://doi.org/10.1038/s41598-017-13084-x

    Article  Google Scholar 

  29. Mollinger A, Nieuwstadt F (1996) Measurement of the lift force on a particle fixed to the wall in the sublayer of a fully developed turbulent boundary layer. J Fluid Mech 316:285–306. https://doi.org/10.1017/S0022112096000547

    Article  Google Scholar 

  30. Musick HB, Gillette DA (1990) Field evaluation of relationships between a vegetation structural parameter and sheltering against wind erosion. Land Degrad Dev 2(2):87–94. https://doi.org/10.1002/ldr.3400020203

    Article  Google Scholar 

  31. Nickling W, McKenna Neuman C (1995) Development of deflation lag surfaces. Sedimentology 42(3):403–414

    Article  Google Scholar 

  32. Novak L, Bizjan B, Pražnikar J, Horvat B, Orbanić A, Širok B (2015) Numerical modeling of dust lifting from a complex-geometry industrial stockpile. J Mech Eng 61(11):621–631. https://doi.org/10.5545/sv-jme.2015.2824

    Article  Google Scholar 

  33. Raupach M, Gillette D, Leys J (1993) The effect of roughness elements on wind erosion threshold. J Geophys Res Atmos 98(D2):3023–3029. https://doi.org/10.1029/92JD01922

    Article  Google Scholar 

  34. Shao Y, Lu H (2000) A simple expression for wind erosion threshold friction velocity. J Geophys Res Atmos 105(D17):22437–22443. https://doi.org/10.1029/2000JD900304

    Article  Google Scholar 

  35. Tan L, Zhang W, Qu J, Zhang K, An Z, Wang X (2013) Aeolian sand transport over gobi with different gravel coverages under limited sand supply: a mobile wind tunnel investigation. Aeol Res 11:67–74. https://doi.org/10.1016/j.aeolia.2013.10.003

    Article  Google Scholar 

  36. Turpin C, Badr T, Harion J-L (2010) Numerical modelling of aeolian erosion over rough surfaces. Earth Surf Proc Land 35(12):1418–1429. https://doi.org/10.1002/esp.1980

    Article  Google Scholar 

  37. US Environmental Protection Agency (2006) Miscellaneous Sources. Industrial Wind Erosion. AP-42

  38. Zou X, Zhang C, Cheng H, Kang L, Wu Y (2015) Cogitation on developing a dynamic model of soil wind erosion. Earth Sci 58(3):462–473. https://doi.org/10.1007/s11430-014-5002-5

    Google Scholar 

Download references

Acknowledgements

This work was carried out with the financial support of CAPES and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Furieri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Morais, C.L., Ferreira, M.C.S., Santos, J.M. et al. Influence of non-erodible particles with multimodal size distribution on aeolian erosion of storage piles of granular materials. Environ Fluid Mech 19, 583–599 (2019). https://doi.org/10.1007/s10652-018-9640-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-018-9640-6

Keywords

Navigation