Skip to main content
Log in

SPH numerical investigation of the velocity field and vorticity generation within a hydrofoil-induced spilling breaker

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

In the present work, the velocity field and the vorticity generation in the spilling generated by a NACA 0024 hydrofoil were studied. SPH simulations were obtained by a pseudo-compressible XSPH scheme with pressure smoothing; both an algebraic mixing-length model and a two-equation model were used to represent turbulent stresses. Given the key role of vortical motions in the generation of the spilling breaker, the sources of vorticity were then examined in detail to confirm the interpretation of the mean flow vortical dynamics given in a paper by Dabiri and Gharib (J Fluid Mech 330: 113–139, [1997]). The high precision of the SPH model is confirmed through a comparison with experimental data. Experimental investigations were carried out by measuring the velocity field with a backscatter, two-component four-beam optic-fiber LDA system. The agreement between the numerical results and laboratory measurements in the wake region is satisfactory and allows the evaluation of the wave breaking efficiency of the device by a detailed analysis of the simulated flow field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Antoci C, Gallati M, Sibilla S (2008) Numerical simulation of fluid-structure interaction. Comp Struct 85:879–890

    Article  Google Scholar 

  2. Antuono M, Colagrossi A, Marrone S, Molteni D (2010) Free-surface flows solved by means of SPH schemes with numerical diffusive terms. Comp Phys Comm 181(3):532–549

    Article  Google Scholar 

  3. Banner ML, Peregrine DH (1993) Wave breaking in deep water. Ann Re Fluid Mech 25:373–397

    Article  Google Scholar 

  4. Banner ML, Phillips OM (1974) On the incipient breaking of small scale waves. J Fluid Mech 65:647–656

    Article  Google Scholar 

  5. Battjes JA, Sakai T (1981) Velocity field in a steady breaker. J Fluid Mech 111:21–437

    Article  Google Scholar 

  6. Chen JK, Beraun JE (2000) A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems. Comput Meth Appl Mech Eng 190(1–2):225–239

    Article  Google Scholar 

  7. Cointe R, Tulin M (1994) A theory of steady breakers. J Fluid Mech 276:1–20

    Article  Google Scholar 

  8. Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comp Phys 191:448–475

    Article  Google Scholar 

  9. Dabiri D, Gharib M (1997) Experimental investigation of the vorticity generation within a spilling water wave. J Fluid Mech 330:113–139

    Article  Google Scholar 

  10. De Padova D, Dalrymple RA, Mossa M, Petrillo AF (2008) An analysis of SPH smoothing function modelling a regular breaking wave. Proc. Nat. Conf. XXXI Convegno Nazionale di Idraulica e Costruzioni Idrauliche, Perugia, pp 182–182

    Google Scholar 

  11. De Padova D, Mossa M, Sibilla S (2009) Laboratory experiments and SPH modelling of hydraulic jumps. Proc. Int. Conf. 4th Spheric Workshop, Nantes, pp 255–257

    Google Scholar 

  12. De Padova D, Mossa M, Sibilla S, Torti E (2010) Hydraulic jump simulation by SPH. Proc. Int. Conf. 5th Spheric Workshop, Manchester, pp 50–55

    Google Scholar 

  13. De Padova D, Mossa M, Sibilla S, Torti E (2013) 3D SPH modelling of hydraulic jump in a very large channel. J Hydraulic Res 51:158–173

    Article  Google Scholar 

  14. Dehnen W, Aly H (2012) Improving convergence in smoothed particle hydrodynamics simulations without pairing instability. Monthly Not Royal Astr Soc 425:1068–1082

    Article  Google Scholar 

  15. Di Monaco A, Manenti S, Gallati M, Sibilla S, Agate G, Guandalini R (2011) SPH modeling of solid boundaries through a semi-analytic approach. Eng Appl Comp Fluid Mech 5:1–15

    Google Scholar 

  16. Duncan JH (1981) An experimental investigation of breaking waves produced by a towed hydrofoil. Proc R Soc Lond A 377:331–348

    Article  Google Scholar 

  17. Duncan JH (1983) The breaking and non-breaking wave resistance of two-dimensional hydrofoil. J Fluid Mech 126:507–520

    Article  Google Scholar 

  18. Duncan JH, Philomin V (1994) The formation of spilling breaking water waves. Phys Fluids 8:2558–2560

    Article  Google Scholar 

  19. Espa P, Sibilla S, Gallati M (2008) SPH simulations of a vertical 2-D liquid jet introduced from the bottom of a free-surface rectangular tank. Adv Appl Fluid Mech 3:105–140

    Google Scholar 

  20. Gallati M, Braschi G (2003) Numerical description of the jump formation over a sill via SPH method. In: Proceedings of International Conference Modelling Fluid Flow CMFF-03, Budapest, pp 845–852

  21. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to nonspherical stars. Mon Not R Astron Soc 181:375–389

    Article  Google Scholar 

  22. Gomez-Gesteira M, Rogers BD, Darlymple RA, Crespo AJC (2010) State-of-the-art of classical SPH for free-surface flows. J Hydraulic Res 48:6–27

    Article  Google Scholar 

  23. Gotoh H, Ikari H, Memita T, Sakai T (2005) Lagrangian particle method for simulation of wave overtopping on a vertical seawall. Coast Eng J 47(2–3):157–181

    Article  Google Scholar 

  24. Grenier N, Le Touzé D, Colagrossi A, Antuono M, Colicchio G (2013) Viscous bubbly flow simulation with an interface SPH model. Ocean Eng 69:88–102

    Article  Google Scholar 

  25. Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comp Meth Appl Mech Eng 3:269–289

    Article  Google Scholar 

  26. Lin JC, Rockwell D (1994) Instantaneous structure of a breaking wave. Phys Fluids 6:2877–2879

    Article  Google Scholar 

  27. Lin JC, Rockwell D (1995) Evolution of a quasi-steady breaking wave. J Fluid Mech 302:29–44

    Article  Google Scholar 

  28. Liu GR, Liu MB (2007) Smoothed particle hydrodynamics—a meshfree particle methods. World Scientific Publishing, Singapore

    Google Scholar 

  29. Liu GR, Liu MB (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17:25–76

    Article  Google Scholar 

  30. Lucy L (1977) A numerical approach to the testing of fusion process. J Astron 82:1013–1024

    Article  Google Scholar 

  31. Manenti S, Sibilla S, Gallati M, Agate G, Guandalini R (2012) SPH simulation of sediment flushing induced by a rapid water flow. J Hydraulic Eng 138:272–284

    Article  Google Scholar 

  32. Miyata H, Inui T (1984) Nonlinear ship waves. Adv Appl Mech 24:215–288

    Article  Google Scholar 

  33. Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev Astron Astrophys 30:543–574

    Article  Google Scholar 

  34. Monaghan JJ (1992) Simulating free surface flows with SPH. J Comp Phys 110(2):399–406

    Article  Google Scholar 

  35. Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68:1703–1759

    Article  Google Scholar 

  36. Mohaghan JJ, Kocharyan A (1995) SPH simulation of multi-phase flow. Comput Phys Commun 87:225–235

    Article  Google Scholar 

  37. Monaghan JJ, Lattanzio JC (1985) A refined particle method for astrophysical problems. Astron Astrophys 149:135–143

    Google Scholar 

  38. Morris JP (1996) A study of the stability properties of smooth particle hydrodynamics. Publ Astron Soc Austr 13:97–102

    Google Scholar 

  39. Mossa M (2008) Experimental study of the flow field with spilling type breaking. J Hydraulic Res 46:81–86

    Article  Google Scholar 

  40. Peregrine DH, Svendsen IA (1978) Spilling breakers, bores and hydraulic jumps. Coast Eng 30:540–550

    Article  Google Scholar 

  41. Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng 139(1–4):375–408

    Article  Google Scholar 

  42. Shadloo MS, Zainali A, Sadek SH, Yildiz M (2011) Improved incompressible smoothed particle hydrodynamics method for simulating flow around bluff bodies. Comput Methods Appl Mech Eng 200:1008–1020

    Article  Google Scholar 

  43. Shao SD, Lo EYM (2003) Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv Water Res 26(7):787–800

    Article  Google Scholar 

  44. Sheldahl RE, Klimas PC (1980) Aerodynamic characteristics of seven symmetrical airfoil sections through 180° angle of attack for use in aerodynamic analysis of vertical axis wind turbines. Sandia National Laboratories Report 80-2114

  45. Sibilla S (2008) SPH simulation of local scour processes. ERCOFTAC Bull 76:41–44

    Google Scholar 

  46. Tennekes H, Lumley JL (1981) A first course in turbulence. The MIT Press, Cambridge

    Google Scholar 

  47. Tulin MP, Cointe R (1986) A theory of spilling breakers. In: Proceeding 16th Symposium. Naval Hydrodynamics, Berkley, National Academy Press, Washington DC, pp 93–105

  48. Violeau D (2012) Fluid mechanics and the SPH method: theory and applications. Oxford University Press, Oxford

    Book  Google Scholar 

  49. Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4:389–396

    Article  Google Scholar 

  50. Willmott CJ (1981) On the validation of models. Phys Geogr 2:184–194

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana De Padova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Padova, D., Mossa, M. & Sibilla, S. SPH numerical investigation of the velocity field and vorticity generation within a hydrofoil-induced spilling breaker. Environ Fluid Mech 16, 267–287 (2016). https://doi.org/10.1007/s10652-015-9433-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-015-9433-0

Keywords

Navigation