Skip to main content
Log in

Grounded blends and mathematical gesture spaces: developing mathematical understandings via gestures

  • Published:
Educational Studies in Mathematics Aims and scope Submit manuscript

Abstract

This paper examines how a person’s gesture space can become endowed with mathematical meaning associated with mathematical spaces and how the resulting mathematical gesture space can be used to communicate and interpret mathematical features of gestures. We use the theory of grounded blends to analyse a case study of two teachers who used gestures to construct a graphical anti-derivative while working on a professional development task in a calculus modelling activity. Results indicate that mathematical gesture spaces can encourage mathematical experimentation, lighten the cognitive load for students and can be limited by a person’s physical constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alexander, J. C. (2008). Mathematical blending. Retrieved on February 22, 2010, from http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1404844.

  • Alibali, M., & diRusso, A. (1999). The function of gesture in learning to count: More than keeping track. Cognitive Development, 14, 37–56.

    Article  Google Scholar 

  • Arzarello, F., & Paola, D. (2007). Semiotic games: The role of the teacher. In J-H. Woo, H-C. Lew, K-S. Park, & D-Y. Seo (Eds.), Proceedings of the 31st Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 17–24). Seoul: PME.

  • Arzarello, F., Paola, D., Robutti, O., & Sabena, C. (2009). Gestures as semiotic resources in the mathematics classroom. Educational Studies in Mathematics, 70(2), 97–109.

    Article  Google Scholar 

  • Arzarello, F., & Robutti, O. (2008). Framing the embodied mind approach within a multimodal paradigm. In L. English (Ed.), Handbook of international research in mathematics education (pp. 720–749). New York: Routledge.

    Google Scholar 

  • Arzarello, F., Thomas, M. O. J., Corballis, M. C., Hamm, J. P., Iwabuchi, S., Lim, V. K., et al. (2009). Didactical consequences of semantically meaningful mathematical gestures. In M. Tzekaki, M. Kaldrimidou, & C. Sakonidis (Eds.), Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 57–64). Thessaloniki, Greece: PME.

    Google Scholar 

  • Bjuland, R., Cestari, M. L., & Borgersen, H. E. (2008). The interplay between gesture and discourse as mediating devices in collaborative mathematical reasoning: A multimodal approach. Mathematical Thinking and Learning, 10, 271–292.

    Article  Google Scholar 

  • Broaders, S., Cook, S. W., Mitchell, Z., & Goldin-Meadow, S. (2007). Making children gesture brings out implicit knowledge and leads to learning. Journal of Experimental Psychology. General, 136, 539–550.

    Article  Google Scholar 

  • Bruner, J. S. (1966). The process of education: Towards a theory of instruction. New York: Norton.

    Google Scholar 

  • Cobb, P., Wood, T., Yackel, E., & McNeal, B. (1992). Characteristics of classroom mathematics traditions: An interactional analysis. American Educational Research Journal, 29, 573–604.

    Google Scholar 

  • Diénès, Z. P. (1960). Building up mathematics (4th ed.). London: Hutchinson.

    Google Scholar 

  • Diénès, Z. P. (1963). An experimental study of mathematics learning. London: Hutchinson.

    Google Scholar 

  • Edwards, L. D. (2009). Gestures and conceptual integration in mathematical talk. Educational Studies in Mathematics, 70, 127–141.

    Article  Google Scholar 

  • Fauconnier, G. (1998). Mental spaces, language modalities, and conceptual integration. In M. Tomasello (Ed.), The new psychology of language (pp. 251–279). Mahwah: Erlbaum.

    Google Scholar 

  • Fauconnier, G., & Turner, M. (2002). How we think: Conceptual blending and the mind’s hidden complexities. New York: Basic Books.

    Google Scholar 

  • Goodwin, C. (2000). Gesture, aphasia, and interaction. In D. McNeill (Ed.), Language and gesture (pp. 84–98). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Haviland, J. (2000). Pointing, gesture spaces, and mental maps. In D. McNeill (Ed.), Language and gesture (pp. 13–47). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Kendon, A. (1988). How gestures can become like words. In F. Poyatos (Ed.), Cross-cultural perspectives in nonverbal communication (pp. 131–141). Toronto: Hogrefe.

    Google Scholar 

  • Lakoff, G., & Núñez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic Books.

    Google Scholar 

  • Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 591–646). Mahwah: Erlbaum.

    Google Scholar 

  • Liddell, S. K. (1996). Spatial representation in discourse: Comparing spoken and signed language. Lingua, 98, 145–167.

    Article  Google Scholar 

  • Liddell, S. K. (1998). Grounded blends, gestures and conceptual shifts. Cognitive Linguistics, 9(3), 283–314.

    Article  Google Scholar 

  • Liddell, S. K. (2000). Blended spaces and deixis in sign language discourse. In D. McNeill (Ed.), Language and gesture (pp. 331–357). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Lim, V. K., Wilson, A. J., Hamm, J. P., Phillips, N., Iwabuchi, S., Corballis, M. C., et al. (2009). Semantic processing of mathematical gestures. Brain and Cognition, 71, 306–312.

    Article  Google Scholar 

  • McNeill, D. (1992). Hand and mind: What gestures reveal about thought. Chicago: The University of Chicago Press.

    Google Scholar 

  • McNeill, D. (2005). Gesture and thought. Chicago: University of Chicago Press.

    Google Scholar 

  • Nemirovsky, R., Tierney, C., & Wright, T. (1998). Body motion and graphing. Cognition and Instruction, 16(2), 119–172.

    Article  Google Scholar 

  • Núñez, R. (2004). Do real numbers really move? Language, thought, and gesture: The embodied cognitive foundations of mathematics. In F. Iida, R. Pfeifer, L. Steels, & Y. Kuniyoshi (Eds.), Embodied artificial intelligence (pp. 54–73). Berlin: Springer.

    Chapter  Google Scholar 

  • Parrill, F., & Sweetser, E. (2004). What we mean by meaning. Gesture, 4(2), 197–219.

    Article  Google Scholar 

  • Radford, L. (2009). Why do gestures matter? Sensuous cognition and the palpability of mathematical meanings. Educational Studies in Mathematics, 70(2), 111–126.

    Article  Google Scholar 

  • Reynolds, F., & Reeve, R. (2002). Gesture in collaborative mathematics problem-solving. Journal of Mathematical Behavior, 20, 447–460.

    Article  Google Scholar 

  • Roth, W.-M. (1994). Thinking with hands, eyes, and signs: Multimodal science talk in a grade 6/7 unit on simple machines. Interactive Learning Environments, 4(2), 170–187.

    Article  Google Scholar 

  • Sfard, A. (2000). Steering (dis)course between metaphors and rigor: Using focal analysis to investigate an emergence of mathematical objects. Journal for Research in Mathematics Education, 31(3), 296–327.

    Article  Google Scholar 

  • Sinclair, N., & Tabaghi, S. G. (2010). Drawing space: Mathematicians’ kinetic conceptions of eigenvectors. Educational Studies in Mathematics, 74, 223–240.

    Article  Google Scholar 

  • Sweetser, E. (2007). Looking at space to study mental spaces. In M. Gonzalez-Marquez, I. Mittelberg, S. Coulson, & M. J. Spivey (Eds.), Methods in cognitive linguistics (pp. 201–224). Philadephia: John Benjamins North America.

    Google Scholar 

  • Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4, 295–312.

    Article  Google Scholar 

  • Tall, D. O. (2004). Building theories: The three worlds of mathematics. For the Learning of Mathematics, 24(1), 29–32.

    Google Scholar 

  • Tall, D. O. (2008). The transition to formal thinking in mathematics. Mathematics Education Research Journal, 20(2), 5–24.

    Article  Google Scholar 

  • Tall, D. O., Thomas, M. O. J., Davis, G., Gray, E., & Simpson, A. (2000). What is the object of the encapsulation of a process? Journal of Mathematical Behavior, 18(2), 223–241.

    Article  Google Scholar 

  • Yoon, C., Dreyfus, T., & Thomas, M. O. J. (2010). How high is the tramping track? Mathematising and applying in a calculus model-eliciting activity. Mathematics Education Research Journal, 22(2), 141–157.

    Article  Google Scholar 

  • Yoon, C., Thomas, M. O. J., & Dreyfus, T. (2009). Gestures and virtual space. In M. Tzekaki, M. Kaldrimidou, & H. Sakonidis (Eds.), Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education (Vol. 5, pp. 409–416). Thessaloniki, Greece: PME.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Yoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, C., Thomas, M.O.J. & Dreyfus, T. Grounded blends and mathematical gesture spaces: developing mathematical understandings via gestures. Educ Stud Math 78, 371–393 (2011). https://doi.org/10.1007/s10649-011-9329-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10649-011-9329-y

Keywords

Navigation