Aleven, V., McLaughlin, E. A., Glenn, R. A., & Koedinger, K. R. (2017). Instruction based on adaptive learning technologies. Handbook of Research on Learning and Instruction, 522–560. https://doi.org/10.4324/9781315736419.ch24.
Aleven, V., McLaren, B., Roll, I., & Koedinger, K. (2006). Toward Meta-cognitive Tutoring: A Model of Help Seeking with a Cognitive Tutor. International Journal of Artificial Intelligence in Education, 16(2), 101–128.
Aleven, V., Roll, I., McLaren, B. M., & Koedinger, K. R. (2016). Help helps, but only so much: research on help seeking with intelligent tutoring systems. International Journal of Artificial Intelligence in Education, 26, 205–223. https://doi.org/10.1007/s40593-015-0089-1, 1.
Azevedo, R., Witherspoon, A., Chauncey, A., Burkett, C., & Fike, A. (2009). MetaTutor: A MetaCognitive tool for enhancing self-regulated learning. AAAI Fall Symposium - Technical Report, FS-09-02, 14–19.
Barrows, H. S., Myers, A., Williams, R. G., & Moticka, E. J. (1986). Large group problem-based learning: a possible solution for the “2 sigma problem.”. Medical Teacher, 8(4), 325–331. https://doi.org/10.3109/01421598609028991.
Article
Google Scholar
Bauer, D. J., & Cai, L. (2009). Consequences of unmodeled nonlinear effects in multilevel models. Journal of Educational and Behavioral Statistics, 34, 97–114. https://doi.org/10.3102/1076998607310504, 1.
Black, P., & Wiliam, D. (2009). Developing the theory of formative assessment. 5–31. https://doi.org/10.1007/s11092-008-9068-5.
Bloom, B. (1968). Learning for mastery. Evaluation Comment, 1(4), 1–12. https://doi.org/10.1021/ed063p318.
Article
Google Scholar
Bloom, B. S. (1984). The 2 sigma problem: the search for methods of group instruction as effective as one-to-one tutoring. Educational Researcher, 13(6), 4–16. https://doi.org/10.3102/0013189X013006004.
Article
Google Scholar
Borsboom, D., Kievit, R. A., Cervone, D., & Hood, S. B. (2009). The two disciplines of scientific psychology, or: the disunity of psychology as a working hypothesis. In Dynamic Process Methodology in the Social and Developmental Sciences (pp. 67–97). https://doi.org/10.1007/978-0-387-95922-1_4.
Bosch, N., D’Mello, S. K., Baker, R. S., Ocumpaugh, J., Shute, V., Ventura, M., … Zhao, W. (2016). Detecting student emotions in computer-enabled classrooms. IJCAI International Joint Conference on Artificial Intelligence, 2016-Januar, 4125–4129.
Bracht, G. H. (1970). Experimental Factors Related to Aptitude-Treatment Interactions. Review of Educational Research, 40(5), 627.
Breitwieser, J., & Brod, G. (2020). Cognitive prerequisites for generative learning: why some learning strategies are more effective than others. Child Development, cdev.13393. https://doi.org/10.1111/cdev.13393.
Catán, L. (1986). The dynamic display of process: historical development and contemporary uses of the microgenetic method. Human Development, 29(5), 252–263. https://doi.org/10.1159/000273062.
Article
Google Scholar
Connor, C. M. D., Morrison, F. J., Fishman, B. J., Schatschneider, C., & Underwood, P. (2007). Algorithm-guided individualized reading instruction. Science, 315(5811), 464–465. https://doi.org/10.1126/science.1134513.
Article
Google Scholar
Connor, C. M., Piasta, S. B., Glasney, S., Schatschneider, C., Fishman, B. J., Underwood, P. S., & Morrison, F. J. (2009). Individualizing student instruction precisely: effects of child-by-instruction interactions on students’ literacy. Child Development, 80(1), 77–100.
Article
Google Scholar
Corbalan, G., Kester, L., & Van Merriënboer, J. J. G. (2006). Towards a personalized task selection model with shared instructional control. Instructional Science, 34(5), 399–422. https://doi.org/10.1007/s11251-005-5774-2.
Article
Google Scholar
Corbett, A. (2001). Cognitive computer tutors: solving the two-sigma problem. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2109, 137–147. https://doi.org/10.1007/3-540-44566-8_14.
Cronbach, L. J. (1957). The two disciplines of scientific psychology. American Psychologist, 12(11), 671–684. https://doi.org/10.1037/h0043943.
Article
Google Scholar
Cronbach, L. J. (1975). Beyond the two disciplines of scientific psychology. American Psychologist, 30(2), 116–127. https://doi.org/10.1037/h0076829.
Article
Google Scholar
Cronbach, L. J., & Snow, R. E. (1977). Aptitudes and instructional methods: A handbook for research on interactions. Irvington.
Crosby, G., & Fremont, H. (1960). Individualized algebra. The Mathematics Teacher, 53, 109–112. https://doi.org/10.2307/27956078.
D’Mello, S., Olney, A., Williams, C., & Hays, P. (2012). Gaze tutor: a gaze-reactive intelligent tutoring system. International Journal of Human Computer Studies, 70(5), 377–398. https://doi.org/10.1016/j.ijhcs.2012.01.004.
Article
Google Scholar
Deno, S. L. (1990). Individual differences and individual difference. The Journal of Special Education, 24(2), 160–173. https://doi.org/10.1177/002246699002400205.
Article
Google Scholar
Dirk, J., & Schmiedek, F. (2016). Fluctuations in elementary school children’s working memory performance in the school context. Journal of Educational Psychology, 108(5), 722–739. https://doi.org/10.1037/edu0000076.
Article
Google Scholar
Dockterman, D. (2018). Insights from 200+ years of personalized learning. Npj Science of Learning, 3(1), 1–6. https://doi.org/10.1038/s41539-018-0033-x.
Article
Google Scholar
Dragon, T., Arroyo, I., Woolf, B. P., Burleson, W., el Kaliouby, R., & Eydgahi, H. (2008). Viewing student affect and learning through classroom observation and physical sensors. In LNCS (Vol. 5091, pp. 29–39). https://doi.org/10.1007/978-3-540-69132-7_8.
Driscoll, M. P. (1987). Aptitude-treatment interaction research revisited. In the annual meeting of the Association for Educational Communications and Technology (pp. 171–182).
Dumas, D., McNeish, D., & Greene, J. A. (2020). Dynamic measurement: a theoretical–psychometric paradigm for modern educational psychology. Educational Psychologist, 55(2), 1–18. https://doi.org/10.1080/00461520.2020.1744150.
Article
Google Scholar
Eslami Sharbabaki, H. H. V. (2013). The effect of metacognitive strategy training on social skills and problem - solving performance. Journal of Psychology & Psychotherapy, 03(04), 4. https://doi.org/10.4172/2161-0487.1000121.
Article
Google Scholar
Essalmi, F., Ayed, L., Ben, J., Jemni, M., Graf, S., & Kinshuk. (2015). Generalized metrics for the analysis of E-learning personalization strategies. Computers in Human Behavior, 48, 310–322. https://doi.org/10.1016/j.chb.2014.12.050.
Article
Google Scholar
Fauth, B., Decristan, J., Rieser, S., Klieme, E., & Büttner, G. (2014). Grundschulunterricht aus Schüler-, Lehrer- und Beobachterperspektive: Zusammenhänge und Vorhersage von Lernerfolg*. Zeitschrift für Pädagogische Psychologie, 28(3), 127–137.
Fisher, A. J., & Boswell, J. F. (2016). Enhancing the personalization of psychotherapy with dynamic assessment and modeling. Assessment, 23(4), 496–506. https://doi.org/10.1177/1073191116638735.
Article
Google Scholar
Förster, N., & Souvignier, E. (2014). Learning progress assessment and goal setting: effects on reading achievement, reading motivation and reading self-concept. Learning and Instruction, 32, 91–100. https://doi.org/10.1016/j.learninstruc.2014.02.002.
Fuchs, L. S. (2004). The past, present, and future of curriculum-based measurement research. School Psychology Review, 33, 188–192.
Article
Google Scholar
Harlen, W., & James, M. (1997). Assessment and learning: differences and relationships between formative and summative assessment. International Journal of Phytoremediation, 21, 365–379. https://doi.org/10.1080/0969594970040304, 3.
Hertzog, C., & Nesselroade, J. R. (2003). Assessing psychological change in adulthood: an overview of methodological issues. Psychology and Aging, 18, 639–657. https://doi.org/10.1037/0882-7974.18.4.639, 4.
Holt, P., Dubs, S., Jones, M., & Greer, J. (1994). The state of student modelling. In Student Modelling: The Key to Individualized Knowledge-Based Instruction (pp. 3–35). https://doi.org/10.1007/978-3-662-03037-0_1.
Jung, P.-G., McMaster, K. L., Kunkel, A. K., Shin, J., & Stecker, P. M. (2018). Effects of data-based individualization for students with intensive learning needs: a meta-analysis. Learning Disabilities Research & Practice, 33, 144–155. https://doi.org/10.1111/ldrp.12172, 3.
Kalyuga, S. (2007). Expertise reversal effect and its implications for learner-tailored instruction. Educational Psychology Review, 19(4), 509–539. https://doi.org/10.1007/s10648-007-9054-3.
Article
Google Scholar
Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 38(1), 23–31. https://doi.org/10.1207/S15326985EP3801_4.
Article
Google Scholar
Kelly, D., & Tangney, B. (2006). Adapting to intelligence profile in an adaptive educational system. Interacting with Computers, 18(3), 385–409. https://doi.org/10.1016/j.intcom.2005.11.009.
Article
Google Scholar
Kingston, N., & Nash, B. (2011). Formative assessment: a meta-analysis and a call for research. Educational Measurement: Issues and Practice, 30, 28–37. https://doi.org/10.1111/j.1745-3992.2011.00220.x, 4.
Kirschner, P. A. (2017). Stop propagating the learning styles myth. Computers and Education, 106, 166–171. https://doi.org/10.1016/j.compedu.2016.12.006.
Article
Google Scholar
Klauer, K. J. (2011). Lernverlaufsdiagnostik – Konzept, Schwierigkeiten und Möglichkeiten. Empirische Sonderpädagogik, 207–224.
Koedinger, K. R., Brunskill, E., Baker, R. S. J. D., McLaughlin, E. A., & Stamper, J. (2013). New potentials for data-driven intelligent tutoring system development and optimization. AI Magazine, 34(3), 37–41. https://doi.org/10.1609/aimag.v34i3.2484.
Article
Google Scholar
Koedinger, K. R., Pavlik, P., McLaren, B. M., & Aleven, V. (2008). Is it better to give than to receive? The assistance dilemma as a fundamental unsolved problem in the cognitive science of learning and instruction. Proceedings of the 30th Annual Conference of the Cognitive Science Society, 2155–2160.
Kumar, A., & Ahuja, N. J. (2020). An adaptive framework of learner model using learner characteristics for intelligent tutoring systems. Adv. Intell. Syst. Comput., 989, 425–433. https://doi.org/10.1007/978-981-13-8618-3_45.
Article
Google Scholar
Lahti, M., Hätönen, H., & Välimäki, M. (2014). Impact of e-learning on nurses’ and student nurses knowledge, skills, and satisfaction: a systematic review and meta-analysis. International Journal of Nursing Studies, Vol. 51, pp. 136–149. https://doi.org/10.1016/j.ijnurstu.2012.12.017, 1.
Lee, J., & Park, O. (2008). Adaptive instructional systems. Handbook of research on educational communications and. Handbook of research on educational communications and technology, 469–484.
Lehman, B., Matthews, M., D’Mello, S., & Person, N. (2008). What are you feeling? Investigating student affective states during expert human tutoring sessions. In Intelligent Tutoring Systems (pp. 50–59). https://doi.org/10.1007/978-3-540-69132-7_10.
Lehman, B., Mello, S. D., Strain, A., Mills, C., Gross, M., Dobbins, A., et al. (2013). Inducing and tracking confusion with contradictions during complex learning. International Journal of Artificial Intelligence in Education, 22, 85–105. https://doi.org/10.3233/JAI-130025.
Article
Google Scholar
Luciana, M., Conklin, H. M., Hooper, C. J., & Yarger, R. S. (2005). The development of nonverbal working memory and executive control processes in adolescents. Child Development, 76, 697–712. https://doi.org/10.1111/j.1467-8624.2005.00872.x, 3.
Ma, W., Nesbit, J. C., & Liu, Q. (2014). Intelligent tutoring systems and learning outcomes: a meta-analysis. Journal of Educational Psychology, 106, 901–918. https://doi.org/10.1037/a0037123.supp.
McLoughlin, C., & Lee, M. J. W. (2009). Personalised learning spaces and self-regulated learning: global examples of effective pedagogy. ASCILITE 2009 - The Australasian Society for Computers in Learning in Tertiary Education, 639–645.
Murayama, K., Goetz, T., Malmberg, L.-E., Pekrun, R., Tanaka, A., & Martin, A.-J. (2017). Within-person analysis in educational psychology: importance and illustrations. In British Journal of Educational Psychology Monograph Series II: Psychological Aspects of Education --- Current Trends: The role of competence beliefs in teaching and learning (Vol. 12, pp. 71–87).
Nesselroade, J. R. (1991). The warp and the woof of the developmental fabric. In R. M. Downs, L. S. Liben, & D. S. Palermo (Eds.), Visions of aesthetics, the environment & development: The legacy of Joachim F. Wohlwill (pp. 213–240).
Neubauer, A. B., Dirk, J., & Schmiedek, F. (2019). Momentary working memory performance is coupled with different dimensions of affect for different children: a mixture model analysis of ambulatory assessment data. Developmental Psychology, 55, 754–766. https://doi.org/10.1037/dev0000668, 4.
Nugteren, M. L., Jarodzka, H., Kester, L., & Van Merriënboer, J. J. G. (2018). Self-regulation of secondary school students: self-assessments are inaccurate and insufficiently used for learning-task selection. Instructional Science, 46, 357–381. https://doi.org/10.1007/s11251-018-9448-2, 3.
Nwana, H. S. (1990). Intelligent tutoring systems: an overview. Artificial Intelligence Review, 4(4), 251–277. https://doi.org/10.1007/BF00168958.
Article
Google Scholar
Pashler, H., McDaniel, M., Rohrer, D., & Bjork, R. (2008). Learning styles concepts and evidence. Psychological Science in the Public Interest, Supplement, 9(3), 105–119. https://doi.org/10.1111/j.1539-6053.2009.01038.x.
Article
Google Scholar
Preacher, K. J., & Sterba, S. K. (2019). Aptitude-by-Treatment Interactions in Research on Educational Interventions. Exceptional Children, 85(2), 248–264.
Resing, W. C. M., de Jong, F. M., Bosma, T., & Tunteler, E. (2009). Learning during dynamic testing: variability in strategy use by indigenous and ethnic minority children. Journal of Cognitive Education and Psychology, 8(1), 22–37. https://doi.org/10.1891/1945-8959.8.1.22.
Article
Google Scholar
Rey, G. D., & Fischer, A. (2013). The expertise reversal effect concerning instructional explanations. Instructional Science, 41(2), 407–429. https://doi.org/10.1007/s11251-012-9237-2.
Article
Google Scholar
Reyes, M. R., Brackett, M. A., Rivers, S. E., White, M., & Salovey, P. (2012). Classroom emotional climate, student engagement, and academic achievement. Journal of Educational Psychology, 104(3), 700–712.
Rieber, R. W., & Carton, A. S. (1988). The collected works of L. S. Vygotsky. Boston, MA: Springer.
Röcke, C., & Brose, A. (2013). Intraindividual variability and stability of affect and well-being. GeroPsych, 26(3), 185–199. https://doi.org/10.1024/1662-9647/a000094.
Article
Google Scholar
Ryan, E. B., Short, E. J., & Weed, K. A. (2008). The role of cognitive strategy training in improving the academic performance of learning disabled children. Journal of Learning Disabilities, 19, 521–529. https://doi.org/10.1177/002221948601900902, 9.
Salden, R. J. C. M., Paas, F., & Van Merrienboer, J. J. G. (2006). Personalised adaptive task selection in air traffic control. Learning and Instruction, 16, 350–362. https://doi.org/10.1016/j.learninstruc.2006.07.007, 4.
Shapiro, K. R. (1975). An overview of problems encountered in aptitude-treatment interaction (ATI) research for instruction. Educational Communication and Technology Journal, 23(2), 227–241. https://doi.org/10.1007/BF02768380.
Slavin, R. E. (1987). Ability grouping and student achievement in elementary schools: a best-evidence synthesis. Review of Educational Research, 57, 293–336. https://doi.org/10.3102/00346543057003293, 3.
Slavin, R. E., & Karweit, N. L. (1985). Effects of whole class, ability grouped, and individualized instruction on mathematics achievement. In American Educational Research Journal Fall, 22). http://journals.sagepub.com/doi/pdf/10.3102/00028312022003351(3), 351–367.
Article
Google Scholar
Son, L. K., & Metcalfe, J. (2000). Metacognitive and control strategies in study-time allocation. Journal of Experimental Psychology: Learning Memory and Cognition, 26(1), 204–221. https://doi.org/10.1037/0278-7393.26.1.204.
Article
Google Scholar
Stecker, P M, Fuchs, L. S., & Fuchs, D. (2005). Using curriculum-based measurement to improve student achievement: review of research. Psychology in the Schools, 42, 795–819. https://doi.org/10.1002/pits.20113, 8.
Steenbergen-Hu, S., & Cooper, H. (2014). A meta-analysis of the effectiveness of intelligent tutoring systems on college students’ academic learning. Journal of Educational Psychology, 106(2), 331–347. https://doi.org/10.1037/a0034752.
Article
Google Scholar
Sitzmann, T., Kraiger, K., Stewart, D., & Wisher, R. (2006). The comparative effectiveness of web‐based and classroom instruction: A meta‐analysis. Personnel psychology, 59(3), 623–664.
Tobias, S. (1989). Another look at research on the adaptation of instruction to students characteristics. Educational Psychologist, 24(3), 213–227. https://doi.org/10.1207/s15326985ep2403_1.
Article
Google Scholar
Truong, H. M. (2016). Integrating learning styles and adaptive e-learning system: current developments, problems and opportunities. Computers in Human Behavior, 55, 1185–1193. https://doi.org/10.1016/j.chb.2015.02.014.
Article
Google Scholar
Vanlehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educational Psychologist, 46(4), 197–221. https://doi.org/10.1080/00461520.2011.611369.
Article
Google Scholar
Vogelaar, B., Resing, W. C. M., & Stad, F. E. (2020). Dynamic testing of children’s solving of analogies: differences in potential for learning of gifted and average-ability children. Journal of Cognitive Education and Psychology, 19(1), 43–64. https://doi.org/10.1891/jcep-d-19-00042.
Article
Google Scholar
Walkington, C. A. (2013). Using adaptive learning technologies to personalize instruction to student interests: the impact of relevant contexts on performance and learning outcomes. Journal of Educational Psychology, 105(4), 932–945. https://doi.org/10.1037/a0031882.
Article
Google Scholar
Waxman, H. C., Wang, M. C., Anderson, K. A., Herbert, J., Waxman, C., Wang, M. C., & Anderson, K. A. (1985). Adaptive education and student outcomes : a quantitative synthesis. 78, 228–236.
Wesson, C. L., King, R. P., & Deno, S. L. (1984). Direct and frequent measurement of student performance: if it’s good for us, why don’t we do it? Learning Disability Quarterly, 7, 45–48. https://doi.org/10.2307/1510260.
Article
Google Scholar
Yang, T.-C., Hwang, G.-J., & Yang, S. J.-H. (2013). Development of an adaptive learning system with multiple perspectives based on students’ learning styles and cognitive styles. Journal of Educational Technology & Society, Vol. 16, pp. 185–200. https://doi.org/10.2307/jeductechsoci.16.4.185.