Skip to main content
Log in

Molecular characterization and transcriptional modulation of stress-responsive genes under heavy metal stress in freshwater ciliate, Euplotes aediculatus

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Heavy metal pollutants in the environment are increasing exponentially due to various anthropogenic factors including mining, industrial and agricultural wastes. Living organisms exposed to heavy metals above a certain threshold level induces deleterious effects in these organisms. To live in such severe environments, microbes have developed a range of tolerance mechanisms which include upregulation of stress-responsive genes and/or antioxidant enzymes to detoxify the metal stress. Single cell eukaryotic microorganisms, i.e., ciliates, are highly sensitive to environmental pollutants mainly due to the absence of cell wall, which make them suitable candidates for conducting ecotoxicological studies. Therefore, the present investigation describes the effects of heavy metals (cadmium and copper) on freshwater ciliate, Euplotes aediculatus. The activities of antioxidant enzymes, i.e., catalase and glutathione peroxidase in E. aediculatus were determined under heavy metal exposure. Besides, the expression of stress-responsive genes, namely, heat-shock protein 70 (hsp70) and catalase (cat), has also been determined in this freshwater ciliate species under metal stress. The present study showed that the enzyme activity and the expression of these genes increased with an increase in the heavy metal concentration and with the duration of metal exposure. Also, these stress-responsive genes were sequenced and characterized to comprehend their role in cell rescue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The nucleotide sequences obtained in this study have been deposited to GenBank, NCBI.

References

  • Abraham JS, Somasundaram S, Choudhary A, Toteja R, Gupta R, Makhija S, Warren A (2017) Assessment of heavy metal toxicity in four species of freshwater ciliates (Spirotrichea:Ciliophora) from Delhi, India. Curr Sci 113:2141–2150

    Article  CAS  Google Scholar 

  • Abraham J, Somasundaram S, Maurya S, Makhija S, Gupta R, Toteja R (2019a) Techniques and tools for species identification in ciliates: A review. Int J Syst Evol Microbiol 69. https://doi.org/10.1099/ijsem.0.003176

  • Abraham JS, Sripoorna S, Dagar J, Jangra S, Kumar A, Yadav K, Singh S, Goyal A, Maurya S, Gambhir G, Toteja R, Gupta R, Singh DK, El-Serehy HA, Al-Misned FA, Al-Farraj SA, Al-Rasheid KA, Maodaa SA, Makhija S (2019b) Soil ciliates of the Indian Delhi Region: Their community characteristics with emphasis on their ecological implications as sensitive bio-indicators for soil quality. Saudi J Biol Sci 26:1305–1313

    Article  Google Scholar 

  • Abraham JS, Somasundaram S, Maurya S, Gupta R, Makhija S, Toteja R (2021) Characterization of Euplotes lynni nov. spec., E. indica nov. spec. and description of E. aediculatus and E. woodruffi (Ciliophora, Euplotidae) using an integrative approach. Eur J Protistol 79:125779

    Article  Google Scholar 

  • Ajayan KV, Selvaraju M (2012) Heavy metal induced antioxidant defense system of green microalgae and its effective role in phycoremediation of tannery effluent. Pak J Biol Sci 15:1056–1062

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J Chem 2019:1–14

    Google Scholar 

  • Anu A, Upadhyaya SK, Bajpai A (2010) Seasonal analysis of soil sediment of Shahpura Lake of Bhopal (M.P.). Int J Environ Sci Dev 333–335

  • Arora S, Gupta R, Machwe S, Sapra GR (1999) Influence of cadmium on development of surface ciliary structures in the ciliate Stylonychia mytilus (Ciliophora, Oxytrichidae). Europ J Protistol 35:281–289

    Article  Google Scholar 

  • Aydin S, Büyük İ, Gündüzer E, Büyük B, Kandemir I, Cansaran-Duman D, Aras S (2016) Effects of lead (Pb) and cadmium (Cd) elements on lipid peroxidation, catalase enzyme activity and catalase gene expression profile in tomato plants. Tarim Bilim Derg 22:539–547

    Article  Google Scholar 

  • Azpilicueta C, Pena L, Tomaro M, Gallego S (2008) Modifications in catalase activity and expression in developing sunflower seedlings under cadmium stress. Redox Rep: Commun. Free Radic Res 13:40–46

    CAS  Google Scholar 

  • Babu K, Selvanayagam M (2013) Seasonal variations in physicochemical parameters and heavy metals concentration in water and sediment of Kolavai Lake, Chengalpet, India. Int J Chem Tech Res 5:532–549

    Google Scholar 

  • Bhaduri AM, Fulekar MH (2012) Antioxidant enzyme responses of plants to heavy metal stress. Rev Environ Sci Biotechnol 11:55–69

    Article  CAS  Google Scholar 

  • Bhardwaj R, Gupta A, Garg JK (2017) Evaluation of heavy metal contamination using environmetrics and indexing approach for River Yamuna, Delhi stretch, India. Water Sci 31:55–66

    Article  Google Scholar 

  • Benlaifa M, Djebar MR, Berredjerm H, Benamara M, Ouali K, Djebar H (2016) Stress induced by cadmium: Its effects on growth respiratory metabolism, antioxidant enzymes and reactive oxygen species (ROS) of Paramecium sp. Int J Pharm Sci Rev Res 38:276–281

    CAS  Google Scholar 

  • Boudjema K, Kourdali S, Bounakous N, Meknachi A, Badis A (2014) Catalase activity in Brown Mussels (Perna perna) under acute cadmium, lead, and copper exposure and depuration tests. J Mar Biol 2014:1–9

    Article  Google Scholar 

  • Brehmer D, Rüdiger S, Gässler CS, Klostermeier D, Packschies L, Reinstein J, Mayer MP, Bukau B (2001) Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nat Struct Biol 8:427–432

    Article  CAS  Google Scholar 

  • Brraich OS, Jangu S (2015) Evaluation of water quality pollution indices for heavy metal contamination monitoring in the water of Harike Wetland (Ramsar Site), India. Int J Sci Res 5:1–6

    Google Scholar 

  • Casanova F, Honda R, Ferreira-Nozawa M, Aride P, Nozawa S (2013) Effects of copper and cadmium exposure on mRNA expression of catalase, glutamine synthetase, cytochrome P450 and heat shock protein 70 in Tambaqui Fish (Colossoma Macropomum). In: Gene expression to genetical genomics, Fish Biology Project, London, 6:1–8

  • Chapman-Andresen C (1958) Pinocytosis of inorganic salts by Amoeba proteus (Chaos diffluens). C R Trav Lab Carlsberg Chim 31:77–92

    CAS  Google Scholar 

  • Chatterjee SK, Bhattacharjee I, Chandra G (2010) Water quality assessment near an industrial site of Damodar River, India. Environ Monit Assess 161:177–189

    Article  Google Scholar 

  • Chen X, Jiang Y, Gao F, Zheng W, Krock TJ, Stover NA, Lu C, Katz LA, Song W (2019) Genome analyses of the new model protist Euplotes vannus focusing on genome rearrangement and resistance to environmental stressors. Mol Ecol Resour 19:1292–1308

    Article  CAS  Google Scholar 

  • Chieco P, Derenzini M (1999) The Feulgen reaction 75 years on. Histochem Cell Biol 111:345–314

    Article  CAS  Google Scholar 

  • Damodharan (2012) Bioaccumulation of heavy metals in contaminated river water-Uppanar, Cuddalore, South East coast of India. IntechOpen Ltd, London

  • Díaz S, Martín-González A, Gutiérrez JC (2006) Evaluation of heavy metal acute toxicity and bioaccumulation in soil protozoa. Eviron int 32:711–717

    Google Scholar 

  • Dutta S, Meena MK, Charan PD, Chhipa H (2009) Heavy metals in Lake Anasagar of Ajmer, Rajasthan. Indian. J Environ Sci 13:171–174

    CAS  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:1–18

    Article  Google Scholar 

  • Fang W, Chi Z, Li W, Zhang X, Zhang Q (2019) Comparative study on the toxic mechanisms of medical nanosilver and silver ions on the antioxidant system of erythrocytes: From the aspects of antioxidant enzyme activities and molecular interaction mechanisms. J Nanobiotechnol 17:66

    Article  Google Scholar 

  • Ferro D, Bakiu R, Pucciarelli S, Miceli C, Vallesi A, Irato P, Santovito G (2020) Molecular characterization, protein–protein interaction network, and evolution of four glutathione peroxidases from Tetrahymena thermophila. Antioxidants 9:949

    Article  CAS  Google Scholar 

  • Feulgen R, Rossenbeck H (1924) Mikroskopisch-chemischer Nachweis einer Nukleinsäure von Typus der Thymonukleinsäureund die-darauf beruhende selektive Färbung von Zellkernen in mikroskopischen Präparaten. Hoppe-Seyler’s Z Physiol Chem 135:203–248

    Article  CAS  Google Scholar 

  • Gheorghe S, Stoica C, Vasile GG, Nita-Lazar M, Stanescu E, Lucaciu IE (2017) Metals toxic effects in aquatic ecosystems: Modulators of water quality. In: Water quality. IntechOpen, London, pp 59–89

  • Ghori NH, Ghori T, Hayat MQ, Imadi SR, Gul A, Altay V, Ozturk M (2019) Heavy metal stress and responses in plants. Int J Environ Sci Technol 16:1807–1828

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  Google Scholar 

  • Gomes-Junior R, Moldes C, Delite F, Pompeu G, Gratão P, Mazzafera P, Lea P, Azevedo R (2006) Antioxidant metabolism of coffee cell suspension cultures in response to cadmium. Chemosphere 65:1330–1337

    Article  CAS  Google Scholar 

  • Góth L, Rass P, Páy A (2004) Catalase enzyme mutations and their association with diseases. Mol Diagn 8:141–149

    Article  Google Scholar 

  • Grebecki A, Kuznicki L (1956) Autoprotection in Paramecium caudatum by influencing the chemical properties of its medium. Acta Biol Exp 17:71–107

    CAS  Google Scholar 

  • Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with Swiss-Model and Swiss-Pdb-Viewer: A historical perspective. Electrophoresis 30:S162–S173

    Article  Google Scholar 

  • Gutiérrez JC, Martín-González A, Díaz S, Ortega R (2003) Ciliate as potential source of cellular and molecular biomarker/biosensors for heavy metal pollution. Eur J Protistol 39:461–467

    Article  Google Scholar 

  • Gutiérrez JC, Martín-González A, Díaz S, Amaro F, Ortega R, Gallego A, de Lucas MP (2008) Ciliates as cellular tools to study the eukaryotic cell-heavy metal interactions. In: Brown SE, Welton WC (eds) Heavy metal pollution. Nova Science Publishers, New York, pp 1–44

  • Gutiérrez JC, Amaro F, Martín-González A (2015) Heavy metal whole-cell biosensors using eukaryotic microorganisms: an updated critical review. Front Microbiol 6:48

    Google Scholar 

  • Hall TA (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hameed M, Dijoo ZK, Bhat RA, Qayoom I (2020) Concerns and threats of heavy metals’ contamination on aquatic ecosystem. In: Bhat RA, Hakeem KR (eds) Bioremediation and biotechnology. Springer Nature, Switzerland, pp 1–18

  • Hiramoto K, Ojima N, Sako K, Kikugawa K (1996) Effect of plant phenolics on the formation of the spin-adduct of hydroxyl radical and the DNA strand breaking by hydroxyl radical. Biol Pharm Bull 19:558–563

    Article  CAS  Google Scholar 

  • Hong Y, Liu S, Lin X, Li J, Yi Z, Al-Rasheid KA (2015) Recognizing the importance of exposure–dose–response dynamics for ecotoxicity assessment: nitrofurazone-induced antioxidase activity and mRNA expression in model protozoan Euplotes vannus. Environ Sci Pollut Res Int 22:9544–9553

    Article  CAS  Google Scholar 

  • Huang H, Ullah F, Zhou DX, Yi M, Zhao Y (2019) Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci 10:800

    Article  Google Scholar 

  • Hussain J, Husain I, Arif M, Gupta N (2017) Studies on heavy metal contamination in Godavari river basin. Appl Water Sci 7:4539–4548

    Article  CAS  Google Scholar 

  • Idrees N, Tabassum B, Abd Allah EF, Hashem A, Sarah R, Hashim M (2018) Groundwater contamination with cadmium concentrations in some West U.P. regions, India. Saudi J Biol Sci 25:1365–1368

    Article  CAS  Google Scholar 

  • Ighodaro OM, Akinloye OA (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria. J Med 54:287–293

    Google Scholar 

  • Igiri BE, Okoduwa SIR, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from Tannery wastewater: A review. J Toxicol 2018:1–16

    Article  Google Scholar 

  • Jin Y, Luan Y, Ning Y, Wang L (2018) Effects and mechanisms of microbial remediation of heavy metals in soil: A critical review. Appl Sci 8:1336

    Article  Google Scholar 

  • Joshi P, Siddaiah SN, Dixit A (2021) Urban wetlands of Delhi, India: Water quality and pollution status. Chem Ecol 37:104–131

    Article  CAS  Google Scholar 

  • Kim SH, Jung MY, Lee YM (2011) Effect of heavy metals on the antioxidant enzymes in the marine ciliate Euplotes crassus. Toxicol Environ Health Sci 3:213–219

    Article  Google Scholar 

  • Kim SH, Kim SJ, Lee JS, Lee YM (2014) Acute effects of heavy metals on the expression of glutathione-related antioxidant genes in the marine ciliate Euplotes crassus. Mar Pollut Bull 85:455–462

    Article  CAS  Google Scholar 

  • Kim SJ, Kim JH, Ju SJ (2017) Adaptation responses of individuals to environmental changes in the ciliate Euplotes crassus. Ocean Sci J 52:127–138

    Article  Google Scholar 

  • Kumar R, Tripathi R, Gupta A (2014) Seasonal variation of heavy metal concentration in water of River Yamuna, Allahabad, Uttar Pradesh, India. Int J Curr Microbiol Appl Sci 3:945–949

    CAS  Google Scholar 

  • Laskowski RA, MacArthur MW, Thornton JM (2001) PROCHECK: Validation of protein structure coordinates. In: Rossmann MG, Arnold E (eds) International Tables of Crystallography, Volume F. Crystallography of Biological Macromolecules. Kluwer Academic Publishers, Netherlands, pp 722–725

  • Leonard SS, Bower JJ, Shi X (2004) Metal-induced toxicity, carcinogenesis, mechanisms and cellular responses. Mol Cell Biochem 255:3–10

    Article  CAS  Google Scholar 

  • Lionetto MG, Caricato R, Giordano ME (2019) Pollution biomarkers in environmental and human biomonitoring. Open Biomark J 9:1–9

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Luck H (1963) Methods of Enzymatic Analysis. In: Bergmeyer HU (ed), 2nd edn. Academic Press, Cambridge, pp 886

  • Madoni P (2010) Protozoa in wastewater treatment processes: A minireview. Ital J Zool 78:3–11

    Article  Google Scholar 

  • Madoni P, Romeo M (2006) Acute toxicity of heavy metals towards freshwater ciliated protists. Environ Pollut 141:1–7

    Article  CAS  Google Scholar 

  • Makhija S, Gupta R, Toteja R, Abraham JS, Sripoorna S (2015) Cadmium induced ultrastructural changes in the ciliate, Stylonychia mytilus (Ciliophora, Hypotrichida). J Cell Tissue Res 15:5151–5157

    CAS  Google Scholar 

  • Malik JA, Goel S, Kaur N, Sharma S, Singh I, Nayyar H (2012) Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environ Exp Bot 77:242–248

    Article  CAS  Google Scholar 

  • Martín-González A, Díaz S, Borniquel S, Gallego A, Gutiérrez JC (2006) Cytotoxicity and bioaccumulation of heavy metals by ciliated protozoa isolated from urban wastewater treatment plants. Res Microbiol 157:108–118

    Article  Google Scholar 

  • Mashhadi Z, Newcomer ME, Brash AR (2016) The Thr–His connection on the distal heme of catalase‐related hemoproteins: A hallmark of reaction with fatty acid hydroperoxides. ChemBioChem 17:2000–2006

    Article  CAS  Google Scholar 

  • Maurya S, Abraham JS, Somasundaram S, Toteja R, Gupta R, Makhija S (2020) Indicators for assessment of soil quality: A mini-review. Environ Monit Assess 192:604

    Article  Google Scholar 

  • Mayer MP, Gierasch LM (2019) Recent advances in the structural and mechanistic aspects of Hsp70 molecular chaperones. J Biol Chem 294:2085–2097

    Article  CAS  Google Scholar 

  • Mnkandla SM, Basopo N, Siwela AH (2019) The effect of persistent heavy metal exposure on some antioxidant enzyme activities and lipid peroxidation of the freshwater snail, Lymnaea natalensis. Bull Environ Contam Toxicol 103:551–558

    Article  CAS  Google Scholar 

  • Mori G, Erra F, Cionini K, Banchetti R (2003) Sublethal doses of heavy metals and Slow‐Down pattern of Euplotes crassus (Ciliophora, Hypotrichia): A behavioural bioassay. Ital J Zool 70:23–30

    Article  CAS  Google Scholar 

  • Nayak S, Nahak G, Nayak GC, Sahu RK (2010) Physicochemical parameters of Chilika Lake water after opening a new mouth to Bay of Bangal, Orissa, India. C J Env Sci 4:57–65

    Google Scholar 

  • Parihar K, Sankla MS, Kumar R, Singh A (2021) Assessment of copper and iron concentration in water of Yamuna River, Delhi, India. Lett Appl NanoBioSci 10:2251–2257

    Google Scholar 

  • Pudpong S, Chantangsi C (2015) Effects of four heavy metals on cell morphology and survival rate of the ciliate Bresslauides sp. Trop. Nat Hist 15:117–125

    Google Scholar 

  • Radhakrishnan M (2008) Effect of cadmium on catalase activity in four tissues of freshwater fish Heteropneustes fossilis (Bloch.). Internet J Veterin Med 7:1–4

    Google Scholar 

  • Rasmussen R (2001) Quantification on the lightcycler. In: Meuer S, Wittwer C, Nakagawara K (eds) Rapid cycle real-time PCR. Springer Press, Heidelberg, pp 21–34

  • Rehman A, Shakoori R, Shakoori A (2006) Heavy metal resistant ciliate, Euplotes mutabilis, isolated from industrial effluents can decontaminate wastewater of heavy metals. Bull Environ Contam Toxicol 76:907–913

    Article  CAS  Google Scholar 

  • Rehman A, Shakoori FR, Shakoori AR (2008) Heavy metal resistant freshwater ciliate, Euplotes mutabilis, isolated from industrial effluents has potential to decontaminate wastewater of toxic metals. Bioresour Technol 99:3890–3895

    Article  CAS  Google Scholar 

  • Rehman A, Shakoori R, Shakoori A (2009) Heavy metal uptake by Euplotes mutabilis and its possible use in bioremediation of industrial wastewater. Bull Environ Contam Toxicol 83:130–135

    Article  CAS  Google Scholar 

  • Rizvi SMD, Shakil S, Haneef M (2013) A simple click by click protocol to perform docking: AutoDock 4.2 made easy for non-bioinformaticians. Excli J 12:831–857

    Google Scholar 

  • Roh JY, Lee J, Choi J (2006) Assessment of stress-related gene expression in the heavy metal-exposed nematode Caenorhabditis elegans: A potential biomarker for metal-induced toxicity monitoring and environmental risk assessment. Environ Toxicol Chem 25:2946–2956

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Article  Google Scholar 

  • Sheikh JA, Jeelani G, Gavali RS, Shah RA (2014) Weathering and anthropogenic influences on the water and sediment chemistry of Wular Lake, Kashmir Himalaya. Environ Earth Sci 6:2837–2846

    Article  Google Scholar 

  • Showqi I, Lone FA, Naikoo M (2018) Preliminary assessment of heavy metals in water, sediment and macrophyte (Lemna minor) collected from Anchar Lake, Kashmir, India. Appl Water Sci 8:80

    Article  Google Scholar 

  • Somasundaram S, Abraham JS, Maurya S, Makhija S, Gupta R, Toteja R (2018) Cellular and molecular basis of heavy metal-induced stress in ciliates. Curr Sci 114:1858–1865

    Article  CAS  Google Scholar 

  • Somasundaram S, Abraham JS, Maurya S, Toteja R, Gupta R, Makhija S (2019) Expression and molecular characterization of stress-responsive genes (hsp70 and Mn-sod) and evaluation of antioxidant enzymes (CAT and GPx) in heavy metal exposed freshwater ciliate, Tetmemena sp. Mol Biol Rep 46:4921–4931

    Article  CAS  Google Scholar 

  • Tamás MJ, Sharma SK, Ibstedt S, Jacobson T, Christen P (2014) Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules 4:252–267

    Article  Google Scholar 

  • Toteja R, Makhija S, Somasundaram S, Abraham JS, Gupta R (2017) Influence of copper and cadmium toxicity on antioxidant enzyme activity in freshwater ciliates. Indian J Exp Biol 55:694–701

    CAS  Google Scholar 

  • Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  Google Scholar 

  • Vestena S, Cambraia J, Ribeiro C, Oliveira JA, Oliva MA (2011) Cadmium-induced oxidative stress and antioxidative enzyme response in Water Hyacinth and Salvinia. Braz J Plant Physiol 23:131–139

    Article  CAS  Google Scholar 

  • Vilas-Boas JA, Senra MVX, Dias RDP (2020) Ciliates in ecotoxicological studies: A minireview. Acta Limnol Bras 32:e202

    Article  Google Scholar 

  • Vogel M, Bukau B, Mayer MP (2006) Allosteric regulation of Hsp70 chaperones by a proline switch. Mol Cell 3:359–367

    Article  Google Scholar 

  • Xu H, Zhang W, Jiang Y (2014) Do early colonization patterns of periphytic ciliate fauna reveal environmental quality status in coastal waters? Environ Sci Pollut Res 21:7097–7112

    Article  CAS  Google Scholar 

  • Yang J, Zhang Y (2015) Protein structure and function prediction using I-TASSER. Curr Protoc Bioinform 52:5.8.1–5.8.15

    Article  Google Scholar 

  • Yeomans W, Chubb J, Sweeting R (1997) Use of protozoan communities for pollution monitoring. Parassitologia 39:201–212

    CAS  Google Scholar 

  • Zaidi J, Pal A (2017) Review on heavy metal pollution in major lakes of India: Remediation through plants. Afr J Environ Sci Technol 11:255–265

    Article  CAS  Google Scholar 

  • Zámocký M, Koller F (1999) Understanding the structure and function of catalases: Clues from molecular evolution and in vitro mutagenesis. Prog Biophys Mol Biol 72:19–66

    Article  Google Scholar 

  • Zhang FQ, Wang YS, Lou ZP, Dong J (2007) Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67:44–50

    Article  CAS  Google Scholar 

  • Zitka O, Skalickova S, Gumulec J, Masarik M, Adam V, Hubalek J, Trnkova L, Kruseova J, Eckschlager T, Kizek R (2012) Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol Lett 4:1247–1253

    Article  CAS  Google Scholar 

  • Zoidis E, Seremelis I, Kontopoulos N, Danezis GP (2018) Selenium-dependent antioxidant enzymes: Actions and properties of selenoproteins. Antioxidants (Basel) 7:66

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the facilities provided by the Principal, Acharya Narendra Dev College, University of Delhi for carrying out the present study. The work was also supported by the Senior Research Fellowships to S Somasundaram from UGC (University Grants Commission) and JS Abraham and S Maurya from CSIR (Council of Scientific and Industrial Research), New Delhi, India. We sincerely appreciate all the valuable comments and suggestions given by the editor and reviewers which helped us to improve the quality of the manuscript significantly.

Author contributions

R Toteja and S Makhija designed the present study. S Somasundaram, JS Abraham, and S Maurya collected the freshwater samples and performed experiments. S Somasundaram and JS Abraham analyzed the data. S Somasundaram wrote the paper. S Makhija, R Toteja, and R Gupta supervised this study and revised/ improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema Makhija.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent to participate

All authors consent to participate in this study.

Consent for publication

All authors consent for publication of this paper.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somasundaram, S., Abraham, J.S., Maurya, S. et al. Molecular characterization and transcriptional modulation of stress-responsive genes under heavy metal stress in freshwater ciliate, Euplotes aediculatus. Ecotoxicology 31, 271–288 (2022). https://doi.org/10.1007/s10646-021-02518-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-021-02518-y

Keywords

Navigation