Skip to main content
Log in

Silver nanoparticles effect on Artemia salina and Allium cepa organisms: influence of test dilution solutions on toxicity and particles aggregation

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the effects of AgNPs on Artemia salina and Allium cepa, evaluating the influence of the dilution solutions on the particle behavior. The AgNPs were synthesized by chemical reduction of AgNO3 (3 and 5 mmol L−1) with sodium borohydride and stabilized with PVA (polyvinyl alcohol) and CMC (sodium carboxymethyl cellulose). The toxicity of AgNPs was evaluated in Artemia salina (mortality) using Meyer’s solution as a diluent and in Allium cepa (chromosomal aberrations) using reconstituted hard water. AgNPs showed characteristic molecular absorption bands. Particles with CMC presented hydrodynamic radius between 4 and 102 nm and with PVA between 7 and 46 nm. The studied dispersions were toxic to A. salina species. Meyer’s solution, used as dilution water in the test, caused precipitation of Ag+ and also caused changes in CMC-stabilized AgNPs, changing the shape of the nanoparticles by depositing precipitates on their surface. These changes make the results of toxicity difficult to interpret. AgNPs stabilized with PVA remained unchanged. AgNPs affected cell division and caused the appearance of chromosomal aberrations on A. cepa. Higher numbers of chromosomal aberrations occurred in dispersions with smaller particle diameters (AgNPs3-PVA and AgNPs5-PVA, without dilution). In the studied conditions the dispersions were toxic to the tested organisms, the concentrations of precursors and the type of stabilizer used influenced the particle size and toxicity. In the test with A. cepa, the reconstituted hard water did not cause changes in the dispersions of AgNPs, whereas for A. salina the Meyer solution promoted aggregation of the particles and precipitation, in the dispersions stabilized with CMC, thus changing the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The supporting data sets are restricted and not publicly available, and the manuscript details the methodologies used that can be reproduced.

References

  • An HJ, Sarkheil M, Parka HS, Yuc J, Johari SA (2019) Comparative toxicity of silver nanoparticles (AgNPs) and silver nanowires (AgNWs) on saltwater microcrustacean, Artemia salina. Comp Biochem Physiol C 218:62–69

    CAS  Google Scholar 

  • Angel BM, Batley GE, Jarolimek CV, Rogers NJ (2013) The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Chemosphere 93:359–365

    CAS  Google Scholar 

  • APHA - American Public Health Association (1998) American Water Works Association (AWWA): Water Pollution Control Federation (WPCF). Standard methods for the examination of water and wastewater, 20 ed. Water Environmental Federation, Washington DC, 1085

  • APHA - American Public Health Association (2005) American Water Works Association (AWWA): Water Pollution Control Federation (WPCF). Standard methods for the examination of water and wastewater, 21 ed. Water Environmental Federation, Washington DC, 1082

  • Ates M, Arslan Z, Demir V, Daniels J, Farah IO (2015) Accumulation and toxicity of CuO and ZnO nanoparticles through waterborne and dietary exposure of goldfish (Carassius auratus). Environ Toxicol 30:119–128

    CAS  Google Scholar 

  • Bakare A, Mosuro A, Osibanjo O (2000) Effect of simulated leachate on chromosomes and mitosis in roots of Allium cepa (L.). J Environ Biol 21:263–271

    CAS  Google Scholar 

  • Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY (2009) Toxicity assessment of multisized gold and silver nanoparticles in Zebrafish embryos. Small 16:1897–1910

    Google Scholar 

  • Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857

    CAS  Google Scholar 

  • Becaro AA, Jonsson CM, Puti FC, Siqueira MC, Mattoso LHC, Correa DS, Ferreira MD (2015) Toxicity of PVA-stabilized silver nanoparticles to algae and microcrustaceans. Environ Nanotechno Monit Manage 3:22–29

    Google Scholar 

  • Benn TM, Werterhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139

    CAS  Google Scholar 

  • Bradford A, Handy RD, Readman JW, Atfield A, Muhling M (2009) Impact of silver nanoparticle contamination on the genetic diversity of natural bacterial assemblages in estuarine sediments. Environ Sci Technol 43:4530–4536

    CAS  Google Scholar 

  • Burić P, Jakšić Ž, Štajner L, Sikirić MD, Jurašin D, Cascio C, Calzolai L, Lyons DM (2015) Effect of silver nanoparticles on Mediterranean sea urchin embryonal development is species specific and depends on moment of first exposure. Mar Environ Res 111:50–59

    Google Scholar 

  • Cabrera GL, Rodriguez DMG (1999) Genotoxicity of soil from farmland irrigated with wastewater using three plant bioassays. Mutat Res 426:211

    CAS  Google Scholar 

  • Chae YJ, Pham CH, Lee J, Bae E, Yi J, Gu MB (2009) Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquat Toxicol 94:320–327

    CAS  Google Scholar 

  • Chambers BA, Afrooz ARMN, Bae S, Aich N, Katz L, Saleh NB, Kirisits MJ (2013) Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles. Environ Sci Technol 48:761–769

    Google Scholar 

  • Chen KL, Elimelech M (2009) Relating colloidal stability of fullerene (C-60) nanoparticles to nanoparticle charge and electrokinetic properties. Environ Sci Technol 43:7270–7276

    CAS  Google Scholar 

  • Chinnapongse SL, MacCuspie RI, Hackley VA (2011) Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters. Sci Total Environ 409:2443–2450

    CAS  Google Scholar 

  • Choi O, Deng KK, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Research 42:3066–3074

    CAS  Google Scholar 

  • Cumberland SA, Lead JR (2009) Particle size distributions of silver nanoparticles at environmentally relevant conditions. J Chromatogr A 1216:9099–9105

    CAS  Google Scholar 

  • Delay M, Dolt T, Woellhaf A, Sembritzki R, Frimmel FH (2011) Interactions and stability of silver nanoparticles in the aqueous phase: influence of natural organic matter (NOM) and ionic strength. J Chromatogr A 1218:4206–4212

    CAS  Google Scholar 

  • Dietz K, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16:582–589

    CAS  Google Scholar 

  • El Badawy AM, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44:1260–1266

    CAS  Google Scholar 

  • El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287

    CAS  Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49

    CAS  Google Scholar 

  • Fabrega J, Fawcett SR, Renshaw JC, Lead JR (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43:7285–7290

    CAS  Google Scholar 

  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531

    CAS  Google Scholar 

  • Falugi C, Aluigi MGA, Faimali M, Ferrando S, Gambardella C, Gatti AM, Ramoino P (2013) Dose dependent effects of silver nanoparticles on reproduction and development of different biological models. Int J Environ Qual 8:61–65

    Google Scholar 

  • Feulgen R, Rossenbeck H (1924) Mikroskopisch-chemischer nachweis einer nucleinsäure vom typus der thymonucleinsaure und die darauf beruhende elektive farbung vom zelikernen in mikroskopischen praparaten. Zts Phys Chem 135:203–248

    CAS  Google Scholar 

  • Fiskesjo G (1997) Allium test for screening chemicals; evaluation of cytological parameters. In: Wang W, Gorsuch JW, Hughes JS (Eds) Plants for Environmental Studies. CRC Lewis Publishers, Boca Raton, New York, NY, p 307–333

    Google Scholar 

  • Gaiser BK, Fernandes TF, Jepson M, Lead JR, Tyler CR, Stone V (2009) Assessing exposure, uptake and toxicity of silver and cerium dioxide nanoparticles from contaminated environments. Environ Health 8:1–4

    Google Scholar 

  • Gangadharan D, Harshvardan K, Gnanasekar G, Dixit D, Popat KM, Anand PS (2010) Polymeric microspheres containing silver nanoparticles as a bactericidal agent for water disinfection. Water Research 44:5481–5487

    CAS  Google Scholar 

  • Grant WF (1982) Chromosome aberration assays in Allium: a report of the U.S. environmental protection agency gene-tox program. Mut Res 99:273–291

    CAS  Google Scholar 

  • Greilhuber J, Ebert I (1994) Genome size variation in Pisum sativum. Genome 37:646–655

    CAS  Google Scholar 

  • Hamilton MA, Russo RC, Thurston RV (1997) Trimmed Spearman Karber statistical method for estimating median lethal concentration in toxicity bioassays. Environ Sci Technol 11:714–719

    Google Scholar 

  • Hänsch M, Emmerling C (2010) Effects of silver nanoparticles on the microbiota and enzyme activity in soil. J Plant Nutr Soil Sci 173:554–558

    Google Scholar 

  • Hoshina M, Marin-Morales MA (2009) Micronucleus and chromosome aberrations induced in onion (Allium cepa) by a petroleum refinery effluent and by river water that receives this effluent. Ecotoxicol Environ Saf 72:2090–2095

    CAS  Google Scholar 

  • Hund-rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ Sci Pollut Res Int 13:225–232

    CAS  Google Scholar 

  • Huynh KA, Chen KL (2011) Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environ Sci Technol 45:5564–5571

    CAS  Google Scholar 

  • ISO/TS 20787 (2017) Nanotechnologies - Aquatic Toxicity Assessment of Manufactured Nanomaterials in Saltwater Lakes Using Artemia sp. Nauplii. ISO, Geneva

    Google Scholar 

  • Jin R, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) PhotoInduced conversion of silver nanospheres to nanoprisms. Science 94:1901–1903

    Google Scholar 

  • Johari SA, Rasmussen K, Gulumian M, Ghazi-Khansari M, Tetarazako N, Kashiwada S, Asghari S, Park JW, Yu IJ (2019) Introducing a new standardized nanomaterial environmental toxicity screening testing procedure, ISO/TS 20787: aquatic toxicity assessment of manufactured nanomaterials in saltwater lakes using Artemia sp. Nauplii. Toxicol Mech Methods 29:95–109

    CAS  Google Scholar 

  • Kaegi I, Voegelin A, Sinnet B, Zuleeg S, Hagendorfer H, Burkhardt M, Siegrist H (2011) Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ Sci Technol 45:3902–3908

    CAS  Google Scholar 

  • Kanaya N, Gill BS, Grover IS, Murin A, Osiecka R, Sandhu SS, Andersson HC (1994) Vicia faba chromosomal aberration assay. Mutat Res 310:231–247

    CAS  Google Scholar 

  • Khaydarov RR, Khaydarov RA, Estrin Y, Evgrafova S, Scheper T, Endres C, Cho SY (2009) Silver nanoparticles environmental and human health impacts. In: Linkov I, Steevens J (eds.) Nanomaterials: Risks and Benefits. Springer Science + Business Media B.V. pp 287-297

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    CAS  Google Scholar 

  • Kumar N, Shah V, Walker VK (2011) Perturbation of an arctic soil microbial community by metal nanoparticles. J Hazard Mater 190:816–822

    CAS  Google Scholar 

  • Kumar P, Selvi SS, Prabha L, Selvaraj M, Rani LM, Palanisamy SP, Boominathan SD, Munisamy G (2012) Antibacterial activity and in-vitro cytotoxicity assay against brine shrimp using silver nanoparticles synthesized from Sargassum ilicifolium. Dig J Nanomater Biostruct 7:1447–1455

    Google Scholar 

  • Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246

    CAS  Google Scholar 

  • Kwok KW, Auffan M, Badireddy AR, Nelson CM, Wiesner MR, Chilkoti A, Liu J, Marinakosc SM, Hinton DE (2012) Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): effect of coating materials. Aquat Toxicol 120:59–66

    Google Scholar 

  • Lee M, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395

    CAS  Google Scholar 

  • Leff DV, Ohara PC, Heath JR, Gelbart WM (1995) Thermodinamic control of gold nanocrystal size: experiment and theory. J Phys Chem 99:7036–7041

    CAS  Google Scholar 

  • Levard C, Hotze EM, Colman BP, Dale AL, Truong L, Yang XY, Bone AJ, Brown GE, Tanguay RL, Di Giulio RT, Bernhardt ES, Meyer JN, Wiesner MR, Lowry GV (2013a) Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environ Sci Technol 47:13440–13448

    CAS  Google Scholar 

  • Levard C, Hotze EM, Lowry GV, Brown Jr GE (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46:6900–6914

    CAS  Google Scholar 

  • Levard C, Mitra S, Yang T, Jew AD, Badireddy AR, Lowry GV, Brown GE (2013b) Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environ Sci Technol 47:5738–5745

    CAS  Google Scholar 

  • Li X, Lenhart JJ, Walker HW (2010) Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir 26:16690–16698

    CAS  Google Scholar 

  • Libralato G (2014) The case of Artemia spp. in nanoecotoxicology. Mar Environ Res 101:38–43

    CAS  Google Scholar 

  • Lish RAD, Johari SA, Sarkheil M, Yu IJ (2019) On how environmental and experimental conditions affect the results of aquatic nanotoxicology on brine shrimp (Artemia salina): a case of silver nanoparticles toxicity. Environ Pollut 255:113358

    Google Scholar 

  • Liu W, Zhou Q, Liu J, Fu J, Liu S, Jiang G (2011) Environmental and biological influences on the stability of silver nanoparticles. Chin Sci Bull 56:2009–2015

    CAS  Google Scholar 

  • Liu Z, Zhou Y, Maszenan AM, Ng WJ, Liu Y (2013) pH-dependent transformation of Ag nanoparticles in anaerobic processes. Environ Sci Technol 47:12630–12631

    CAS  Google Scholar 

  • Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PKH, Chiu JF, Che CM (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12:527–534

    CAS  Google Scholar 

  • Ma R, Levard C, Judy JD, Unrine JM, Durenkamp M, Martin B, Jefferson B, Lowry GV (2013) Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environ Sci Technol 48:104–112

    Google Scholar 

  • Magesky A, Ribeiro CAO, Beaulieu L, Pelletier E (2016) Physiological effects and cellular responses of metamorphic larvae and juveniles of sea urchin exposed to ionic and nanoparticulate silver. Aquat Toxicol 174:208–227

    CAS  Google Scholar 

  • Magesky A, Ribeiro CAO, Beaulieu L, Pelletier E (2017) Silver nanoparticles and dissolved silver activate contrasting immune responses and stress-induced heat shock protein expression in sea urchin (Report). Environ Toxicol Chem 36:1872–1886

    CAS  Google Scholar 

  • Manfra L, Savorelli F, Pisapia M, Magaletti E, Cicero AM (2012) Long-term lethal toxicity test with the crustacean Artemia franciscana. J Vis Exp 62:3790

    Google Scholar 

  • Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551

    CAS  Google Scholar 

  • Maynard AD (2006) Nanotechnology: a research strategy for addressing risk. Woodrow Wilson International Center for Scholars, Washington, D.C

    Google Scholar 

  • Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, Mclaughlin JL (1982) Brine Shrimp: a convenient general bioassay for active plant constituents. J Med Plants Res 45:31–34

    CAS  Google Scholar 

  • Miao AJ, Luo Z, Chen CS, Chin WC, Santschi PH, Quigg A (2010) Intracellular uptake: a possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica. PLoS ONE 5:e15196. https://doi.org/10.1371/journal.pone.0015196

    Article  CAS  Google Scholar 

  • Mock JJ, Barbic CM, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116:6755–6759

    CAS  Google Scholar 

  • Mulfinger L, Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C (2007) Synthesis and study of silver nanoparticles. J Chem Educ 84:322. https://doi.org/10.1021/ed084p322

    Article  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    CAS  Google Scholar 

  • Oliver ALS, Croteau MN, Stoiber TL, Tejamaya M, Römer I, Lead JR, Luoma SN (2014) Does water chemistry affect the dietary uptake and toxicity of silver nanoparticles by the freshwater snail Lymnaea stagnalis? Enviorn Pollut 189:87–91

    CAS  Google Scholar 

  • Panyala NR, Pena-Mendez EM, Havel J (2008) Silver or silver nanoparticles: a hazardous threat to the environment and human health? J Appl Biomed 6:117–129

    CAS  Google Scholar 

  • Quadros ME, Marr LC (2010) Environmental and human health risks of aerosolized silver nanoparticles. J Air Waste Manage Assoc 60:770–781

    CAS  Google Scholar 

  • Rahaman MN (2003) Ceramic processing and sintering. 2rd ed. Marcel Dekker, New York, NY, p 181–247

    Google Scholar 

  • Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18:89–108

    CAS  Google Scholar 

  • Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet JB (2008) Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother 61:869–876

    CAS  Google Scholar 

  • Roh J-Y, Sim SJ, Yi J, Park K, Chung KH, Ryu D-Y, Choi J (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Techno 43:3933–3940

    CAS  Google Scholar 

  • Selvaraj M, Kumar TS, Rao MV (2017) Anticancer activity of biogenic nanosilver and its toxicity assessment on Artemia salina - evaluation of mortality, accumulation and elimination: An experimental report. J Environ Chem Eng 5:1685–1695

    Google Scholar 

  • Šiller L, Lemloh ML, Mendis BG, Horrocks BR, Brümmer F, Davorin Medaković D (2013) Silver nanoparticle toxicity in sea urchin Paracentrotus lividus. Environl Pollut 178:498–502

    Google Scholar 

  • Skoog DA, West DM, Holler FJ (2003) Fundamentals of analytical chemistry. Saunders College Pub, New York, NY

    Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    CAS  Google Scholar 

  • Starov VM (2010) Nanoscience: colloidal and interfacial aspects. CRC Press, Boca Raton

    Google Scholar 

  • Thuptimdang P, Limpiyakorn T, McEvoy J, Prüß BM, Khan E (2015) Effect of silver nanoparticles on Pseudomonas putida biofilms at different stages of maturity. J Hazard Mater 290:127–133

    CAS  Google Scholar 

  • Tian J, Wong KKY, Ho CM, Lok CN, Yu WY, Che CM, Chiu JF, Tam PKH (2007) Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem 2:129–136

    CAS  Google Scholar 

  • Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408:999–1006

    CAS  Google Scholar 

  • Verano-Braga T, Miethling-Graff R, Wojdyla K, Wezesinska-Rogowska A, Brewer JR, Erdmann H, Kjeldsen F (2014) Insights into the cellular response triggered by Ag nanoparticles using quantitative proteomics. ACS publications nano 8:2161–2175

    CAS  Google Scholar 

  • Wang H, Burgess RM, Cantwell MG, Portis L, Perron MM, Wu FC, Ho KT (2014a) Stability and aggregation of silver and titanium dioxide nanoparticles in seawater: role of salinity and dissolved organic carbon. Environ Toxicol Chem 33:1023–1029

    CAS  Google Scholar 

  • Wang H, Ho KT, Scheckel KG, Wu F, Cantwell MG, Katz DR, Horowitz DB, Boothman WS, Burgess RM (2014b) Toxicity, bioaccumulation, and biotransformation of silver nanoparticles in marine organisms. Environ Sci Technol 48:13711–13717

    CAS  Google Scholar 

  • Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gösens I, Van de Meent D, Dekkers S, De Jong WH, Van Zijverden M, Sips AJAM, Geertsma RE (2009) Nano-silver — a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138

    CAS  Google Scholar 

  • Wirth SM, Lowry GV, Tilton RD (2012) Natural organic matter alters biofilm tolerance to silver nanoparticles and dissolved Silver. Environ Sci Technol 46:12687–12696

    CAS  Google Scholar 

  • Xiu Z-M, Ma J, Alvarez PJJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45:9003–9008

    CAS  Google Scholar 

  • Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M, Rose J, Liu J, Bernhardt ES (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–2367

    CAS  Google Scholar 

  • Zhang L, Li X, He R, Wu L, Zhang L, Zeng J (2015) Chloride-induced shape transformation of silver nanoparticles in a water environment. Environ Pollut 204:145–151

    CAS  Google Scholar 

  • Zhao CM, Wang WX (2010) Biokinetic uptake and efflux of silver nanoparticles in Daphnia magna. Environ Sci Technol 44:7699–7704

    CAS  Google Scholar 

  • Zhao CM, Wang WX (2011) Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ Toxicol Chem 30:88–892

    CAS  Google Scholar 

Download references

Funding

The authors are grateful to National Council for Scientific and Technological Development (CNPq) and Coordination for the Improvement of Higher Education Personnel (CAPES) of Brazil for financial support.

Author information

Authors and Affiliations

Authors

Contributions

SMP coordinated the research and supervised the master student JCBA and graduated students LKF and MTMD in laboratory activities, interpretation of results, writing of reports, and in the master’s dissertation; EAC co-supervised the master’s student and contributed to the characterization of silver nanoparticles. Co-author MTV collaborated in interpreting the results, writing the paper and revising it.

Corresponding author

Correspondence to Soraya Moreno Palácio.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent for publication

All authors participated in the preparation of the paper and agree with the publication.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palácio, S.M., de Almeida, J.C.B., de Campos, É.A. et al. Silver nanoparticles effect on Artemia salina and Allium cepa organisms: influence of test dilution solutions on toxicity and particles aggregation. Ecotoxicology 30, 836–850 (2021). https://doi.org/10.1007/s10646-021-02393-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-021-02393-7

Keywords

Navigation