Skip to main content

Advertisement

Log in

Determination of TiO2 and AgTiO2 Nanoparticles in Artemia salina: Toxicity, Morphological Changes, Uptake and Depuration

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

In this study, aquatic stability and toxic effects of TiO2 and AgTiO2 nanoparticles (NPs) were investigated on Artemia salina nauplii. AgTiO2 was found to be more toxic to nauplii compared to TiO2. The mortality rate in nauplii increased significantly with increasing concentrations and duration of exposure. TiO2 eliminations ranged between 27.8 % and 96.5 % at 50 and 1 mg/L TiO2 exposed to nauplii, respectively. Accumulation and elimination of Ag in AgTiO2 exposed nauplii were similar except at 1 mg/L AgTiO2. When NPs were mixed with water, the hydrodynamic dimensions of NPs significantly increased because of aggregation in saltwater but NP size decreased over time. NPs-exposed nauplii showed changes in eye formation, enlargement of the intestine, malformations in the outer shell and antennae loss were also observed. Since accumulation and toxicity of AgTiO2 NPs was higher than TiO2 alone, inevitably release of AgTiO2 into aqueous environments can cause ecological risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med Oxford 56:300–306

    Article  CAS  Google Scholar 

  • Altinok I, Capkin E, Boran H (2011) Influence of bioassay volume, water column height, and octanol-water partition coefficient on the toxicity of pesticides to rainbow trout. Bull Environ Contam Toxicol 86:596–600

    Article  CAS  Google Scholar 

  • Arslan Z, Ertas N, Tyson JF, Uden PC, Denoyer ER (2000) Determination of trace elements in marine plankton by inductively coupled plasma mass spectrometry (ICP-MS). Fresenius J Anal Chem 366:273–282

    Article  CAS  Google Scholar 

  • Arulvasu C, Jennifer SM, Prabhu D, Chandhirasekar D (2014) Toxicity effect of silver nanoparticles in brine shrimp Artemia. Sci World J. doi:10.1155/2014/256919

    Google Scholar 

  • Ates M, Daniels J, Arslan Z, Farah IO (2013) Effects of aqueous suspensions of titanium dioxide nanoparticles on Artemia salina: assessment of nanoparticle aggregation, accumulation, and toxicity. Environ Monit Assess 185:3339–3348

    Article  CAS  Google Scholar 

  • Bai W, Zhang ZY, Tian WJ, He X, Ma YH, Zhao YL, Chai ZF (2010) Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J Nanopart Res 12:1645–1654

    Article  CAS  Google Scholar 

  • Boxall A, Chaudhry Q, Sinclair C, Jones A, Aitken R, Jefferson B, Watts C (2007) Current and future predicted environmental exposure to engineered nanoparticles. Central Science Laboratory, York

    Google Scholar 

  • Choi H, Stathatos E, Dionysiou DD (2006) Sol-gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications. Appl Catal B Environ 63:60–67

    Article  CAS  Google Scholar 

  • Clemente Z, Castro VL, Jonsson CM, Fraceto LF (2014) Minimal levels of ultraviolet light enhance the toxicity of TiO2 nanoparticles to two representative organisms of aquatic systems. J Nanopart Res 16:2559–2575

    Article  CAS  Google Scholar 

  • Daughton CG (2004) Non-regulated water contaminants: emerging research. Environ Impact Assess Rev 24:711–732

    Article  Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2013) Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals 26:913–924

    Article  CAS  Google Scholar 

  • Esterkin CR, Negro AC, Alfano OM, Cassano AE (2005) Air pollution remediation in a fixed bed photocatalytic reactor coated with TiO2. AIChE J 51:2298–2310

    Article  CAS  Google Scholar 

  • Farre M, Gajda-Schrantz K, Kantiani L, Barcelo D (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393:81–95

    Article  CAS  Google Scholar 

  • Ma R, Levard C, Marinakos SM, Cheng Y, Liu J, Michel FM, Brown GE, Lowry GV (2011) Size-controlled dissolution of organic-coated silver nanoparticles. Environ Sci Technol 46:752–759

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    Article  CAS  Google Scholar 

  • OECD (2004) Test No. 202: Daphnia sp. acute immobilisation test. In: OECD Guidelines for the testing of chemicals, Section 2. OECD Publishing, Paris

  • Rand GM (1995) Fundamentals of aquatic toxicology: effects, environmental fate and risk assessment. Taylor and Francis, Philadelphia

    Google Scholar 

  • Service RF (2005) Nanotechnology – calls rise for more research on toxicology of nanomateriais. Science 310:1609

    Article  CAS  Google Scholar 

  • Sorgeloos P (1980) Availability of references Artemia cysts. Mar Ecol Prog Ser 3:363–364

    Article  Google Scholar 

  • Sorgeloos P, Remiche-Van Der Wielen C, Persoone G (1978) The use of Artemia nauplii for toxicity tests – a critical analysis. Ecotoxicol Environ Saf 2:249–255

    Article  CAS  Google Scholar 

  • Taurozzi JS, Hackley VA, Wiesner MR (2011) Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment – issues and recommendations. Nanotoxicology 5:711–729

    Article  CAS  Google Scholar 

  • Wang LF, Habibul N, He DQ, Li WW, Zhang X, Jiang H, Yu HQ (2015) Copper release from copper nanoparticles in the presence of natural organic matter. Water Res 68:12–23

    Article  CAS  Google Scholar 

  • Xiong DW, Fang T, Yu LP, Sima XF, Zhu WT (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409:1444–1452

    Article  CAS  Google Scholar 

  • Yan J, Lin B, Hu C, Zhang HS, Lin ZQ, Xi ZG (2014) The combined toxicological effects of titanium dioxide nanoparticles and bisphenol A on zebrafish embryos. Nanoscale Res Lett 9:406

    Article  CAS  Google Scholar 

  • Zhao CM, Wang WX (2011) Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ Toxicol Chem 30:885–892

    Article  CAS  Google Scholar 

  • Zhao Q, Pang XF, Liu LW, Deng B (2007) The biological effect of iron oxide and its hydrate nanoparticles. Solid State Phenom 121–123:735–738

    Article  Google Scholar 

  • Zhu XS, Chang Y, Chen YS (2010) Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 78:209–215

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilhan Altinok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozkan, Y., Altinok, I., Ilhan, H. et al. Determination of TiO2 and AgTiO2 Nanoparticles in Artemia salina: Toxicity, Morphological Changes, Uptake and Depuration. Bull Environ Contam Toxicol 96, 36–42 (2016). https://doi.org/10.1007/s00128-015-1634-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-015-1634-1

Keywords

Navigation