Skip to main content
Log in

Combined effect of nanoscale zero-valent iron and linear alkylbenzene sulfonate (LAS) to the freshwater algae Scenedesmus obliquus

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

With wide use of nanoparticles, co-exposure of aquatic organisms to nanoparticles and organic pollutants often takes place in the environment. However, the combined effects are still rarely understood. In this study, in order to study the interaction and biological effects of nanoscale zero-valent iron (nZVI) and linear alkylbenzene sulfonate (LAS), which acts as a typical surfactant, the freshwater algae Scenedesmus obliquus was exposed to nZVI and LAS individually and in combination for 96 h. According to the inhibition rate of the algae, the toxic effects were investigated by dose-response analysis. Then the combined effect of nZVI and LAS was evaluated using three evaluation models including toxicity unit (TU), additional index (AI), and mixture toxicity index (MTI). The results showed that the 96 h IC50 of nZVI and LAS to Scenedesmus obliquus was 2.464 mmol L−1 and 0.332 mmol L−1, respectively. When nZVI coexisted with LAS at toxic ratio 1:1, the 96 h IC50 value was 1.658 mmol L−1 (shown with nZVI), and the partly additive effect of nZVI mixed with LAS was confirmed. However, when the toxic ratio of nZVI:LAS was 4:1, it showed synergistic effect. In addition, when nZVI mixed with LAS at toxic ratio 1:4, the joint effect is antagonistic effect. In addition, the content of chorophyll in Scenedesmus obliquus, especially the content of chlorophyll a, was decreased with the increase of mixture dose. However, the protein levels did not show significant changes at different mixture doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson PD, Weber LJ (1975) Proceedings of the International Conference on Heavy Metals in the Environment. Institute of Environmental Studies. Toronto

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Baun A, Sorensen SN, Rasmussen RF, Hartmann NB, Koch CB (2008) Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquat Toxicol. 86:379–387

    Article  CAS  Google Scholar 

  • Bliss IC (1939) The toxicity of poisons applied jointly. Ann Appl Biol 5:585–615

    Article  Google Scholar 

  • Brandt KK, Hesselsoe M, Roslev P, Henriksen K, Sorensen J (2001) Toxic effects of linear alkylbenzene sulfonate on metabolic activity, growth rate, and microcolony formation of Nitrosomonas and Nitrosospira strains. Appl Environ Microb 67:2489–2498

    Article  CAS  Google Scholar 

  • Carpenter AW, Laughton SN, Wiesner MR (2015) Enhanced biogas production from nanoscale zero valent iron-amended anaerobic bioreactors. Environ Eng Sci 32:647–655

    Article  CAS  Google Scholar 

  • Chang MC, Kang HY (2009) Remediation of pyrene-contaminated soil by synthesized nanoscale zero-valent iron particles. J Environ Sci Health 44:576–582

    Article  CAS  Google Scholar 

  • Chen P, Su C, Tseng C, Tan S, Cheng C (2011) Toxicity assessments of nanoscale zerovalent iron and its oxidation products in medaka (Oryzias latipes) fish. Mar Pollut Bull 63:339–346

    Article  CAS  Google Scholar 

  • Cheng R, Li G, Shi L, Xue X, Kang M, Zheng X (2016) The mechanism for bacteriophage f2 removal by nanoscale zero-valent iron. Water Res 105:429–435

    Article  CAS  Google Scholar 

  • Diao M, Yao M (2009) Use of zero-valent iron nanoparticles in inactivating microbes. Water Res 43:5243–5251

    Article  CAS  Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. Chemosphere 89:76–82

    Article  CAS  Google Scholar 

  • Farkas J, Peter H, Ciesielski TM, Thomas KV, Sommaruga R, Salvenmoser W et al. (2015) Impact of TiO2 nanoparticles on freshwater bacteria from three Swedish lakes. Sci Total Environ 535:85–93

    Article  CAS  Google Scholar 

  • Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205

    Article  CAS  Google Scholar 

  • Handy RD, von der Kammer F, Lead JR, Hassellov M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxiclogy 17:287–314

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles TiO2 on algae and daphnids. Environ Sci Pollut Res 13:225–232

    Article  CAS  Google Scholar 

  • Iswarya V, Sharma V, Chandrasekaran N, Mukherjee A (2017) Impact of tetracycline on the toxic effects of titanium dioxide (TiO2) nanoparticles towards the freshwater algal species, Scenedesmus obliquus. Aquat Toxicol 193:168–177

    Article  CAS  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Phys Pflanzen 167:191–194

    Article  CAS  Google Scholar 

  • Jurado E, Fernandez-Serrano M, Lechuga M, Rios F (2012) Environmental impact of ether carboxylic derivative surfactants. J Surfactants Deterg 15:1–7

    Article  CAS  Google Scholar 

  • Keller AA, Mcferran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692

    Article  Google Scholar 

  • Kong X, Wei Y, Xu S, Liu J, Li H, Liu Y et al. (2016) Inhibiting excessive acidification using zero-valent iron in anaerobic digestion of food waste at high organic load rates. Bioresour Technol 211:65–71

    Article  CAS  Google Scholar 

  • Könemann (1981) Fish toxicity tests with mixtures of more than twochemicals a proposal for a quantitative approach and experimental results. Toxicology 19:229–238

    Article  Google Scholar 

  • Lechuga M, Fernández-Serrano M, Jurado E, Núñez-Olea J, Ríos F (2016) Acute toxicity of anionic and non-ionic surfactants to aquatic organisms. Ecotox Environ Safe 125:1–8

    Article  CAS  Google Scholar 

  • Lee J, Bartelt-Hunt SL, Li Y, Morton M (2015) Effect of 17 beta-estradiol on stability and mobility of TiO2 rutile nanoparticles. Sci Total Environ 511:195–202

    Article  CAS  Google Scholar 

  • Lei C, Zhang L, Yang K, Zhu L, Lin D (2016) Toxicity of iron-based nanoparticles to green algae: effects of particle size, crystal phase, oxidation state and environmental aging. Environ Pollut 218:505–512

    Article  CAS  Google Scholar 

  • Liu D, Liu H, Wang S, Chen J, Xia Y (2018) The toxicity of ionic liquid 1-decylpyridinium bromide to the algae Scenedesmus obliquus: growth inhibition, phototoxicity, and oxidative stress. Sci Total Environ 622-623:1572–1580

    Article  CAS  Google Scholar 

  • Magesky A, Pelletier E (2015) Toxicity mechanisms of ionic silver and polymer-coated silver nanoparticles with interactions of functionalized carbon nanotubes on early development stages of sea urchin. Aquat Toxicol 167:106–123

    Article  CAS  Google Scholar 

  • Marking L (1977) Method for Assessing Additive Toxicity of Chemical Mixtures. Aquatic Toxicology and Hazard Evaluation (eds.) F. Mayer and J. Hamelink), ASTM International: West Conshohocken, PA, USA. pp.99–108

  • Marsalek B, Jancula D, Marsalkova E, Mashlan M, Safarova K (2012) Multimodal action and selective toxicity of zerovalent iron nanoparticles against cyanobacteria. Environ Sci Technol 46:2316–2323

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Mädler L (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  • Oprckal P, Mladenovic A, Vidmar J, Pranjic AM, Milacic R, Scancar J (2017) Critical evaluation of the use of different nanoscale zero-valent iron particles for the treatment of effluent water from a small biological wastewater treatment plant. Chem Eng J 321:20–30

    Article  CAS  Google Scholar 

  • Pineda Flores G, Monterrubio Badillo C, Hernandez Cortazar M, Nolasco Hipolito C, Sanchez Perez R, Garcia Sanchez I (2010) Toxic effects of linear alkylbenzene sulfonate, anthracene and their mixture on growth of a microbial consortium isolated from polluted sediment. Rev Int Contaminación Ambiental. 26:39–46

    CAS  Google Scholar 

  • Rasheed QJ, Pandian K, Muthukumar K (2011) Treatment of petroleum refinery wastewater by ultrasound-dispersed nanoscale zero-valent iron particles. Ultrason Sonochem 18:1138–1142

    Article  CAS  Google Scholar 

  • Segura Y, Martinez F, Antonio Melero J (2016) Simple and efficient treatment of high-strength industrial waste water using commercial zero-valent iron. Chem Pap 70:1059–1065

    Article  CAS  Google Scholar 

  • Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ. 81:337–354

    Article  Google Scholar 

  • Sprague JB, Ramsay BA (1965) Lethal levels of mixed copper-zinc solutions for Juvenile Salmon. J the Fish Res Board of Canada. 22:425–432

    Article  CAS  Google Scholar 

  • Stanley JK, Laird JG, Kennedy AJ, Steevens JA (2016) Sublethal effects of multi-walled carbon nanotube exposure in the invertebrate Daphnia magna. Environ Toxicol Chem 35:200–204

    Article  Google Scholar 

  • Tao X, Yu Y, Fortner JD, He Y, Chen Y, Hughes JB (2015) Effects of aqueous stable fullerene nanocrystal (nC60) on Scenedesmus obliquus: evaluation of the sub-lethal photosynthetic responses and inhibition mechanism. Chemosphere 122:162–167

    Article  CAS  Google Scholar 

  • Utsunomiya A, Watanuki T, Matsushita K, Tomita I (1997) Toxic effects of linear alkylbenzenesulfonate and quaternary alkylammonium chloride on Dunaliella sp. as measured by H-1-NMR analysis of glycerol. Chemosphere 35:1215–1226

    Article  CAS  Google Scholar 

  • Valko M, Morris H, Cronin M (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  Google Scholar 

  • Wang D, Lin Z, Yao Z, Yu H (2014) Surfactants present complex joint effects on the toxicities of metal oxide nanoparticles. Chemosphere 108:70–75

    Article  CAS  Google Scholar 

  • Wang Z, Quik JTK, Song L, Van den Brandhof E, Wouterse M, Peijnenburg WJGM (2015) Humic substances alleviate the aquatic toxicity of polyvinylpyrrolidone-coated silver nanoparticles to organisms of different trophic levels. Environ Toxicol Chem 34:1239–1245

    Article  CAS  Google Scholar 

  • Wang Z, Wang S, Peijnenburg WJGM (2016) Prediction of joint algal toxicity of nano-CeO2/nano-TiO2 and florfenicol: independent action surpasses concentration addition. Chemosphere 156:8–13

    Article  CAS  Google Scholar 

  • Wei C, Zhang Y, Guo J, Han B, Yang X, Yuan J (2010) Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus. J Environ Sci 22:155–160

    Article  CAS  Google Scholar 

  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 6:1794–1807

    Article  CAS  Google Scholar 

  • Ye N, Wang Z, Fang H, Wang S, Zhang F (2017) Combined ecotoxicity of binary zinc oxide and copper oxide nanoparticles to Scenedesmus obliquus. Environ Lett 52:555–560

    CAS  Google Scholar 

  • Zhang T, Li X, Lu Y, Liu P, Zhang C, Luo H (2014) Joint toxicity of heavy metals and chlorobenzenes to pyriformis Tetrahymena. Chemosphere. 104:177–183

    Article  CAS  Google Scholar 

  • Zhang X, Wang Z, Wang S, Fang H, Zhang F, Wang D (2017) Impacts of dissolved organic matter on aqueous behavior of nano/micron-titanium nitride and their induced enzymatic/non-enzymatic antioxidant activities in Scenedesmus obliquus. J Environ Sci Health A 52:23–29

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is to commemorate Professor Shu-Pei Cheng. And this work was supported by the National Natural Science Foundation of China (Grant No. 51778618), which is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Shi or Xiang Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, R., Liu, Yp., Chen, Yh. et al. Combined effect of nanoscale zero-valent iron and linear alkylbenzene sulfonate (LAS) to the freshwater algae Scenedesmus obliquus. Ecotoxicology 30, 1366–1375 (2021). https://doi.org/10.1007/s10646-020-02294-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-020-02294-1

Keywords

Navigation