Skip to main content
Log in

Molecular characterization of complement 9 in Epinephelus coioides and differential expression analysis of classical complement genes following Vibrio alginolyticus challenge

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Vibrio alginolyticus is posting an increasing threat to survival of grouper. Classical complement cascade can trigger initiation of immunity, while complement 9 (C9) is a major complement molecule involved in final step of membrane attack complex (MAC) formation. In this study, full-length EcC9 contained an ORF sequence of 1779 bp, encoding a polypeptide of 592 amino acids. A high-level expression of EcC9 mRNA was observed in liver. Following vibrio challenge, increased expression levels of EcC1q, EcBf/C2, EcC4, EcC6, EcC7 and EcC9 mRNA were detected in liver and kidney. These results implied that elevated expression level of classical complement pathway (CCP) and terminal complement components (TCCs) may assess toxicological effect of V. alginolyticus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baker-Austin C, Trinanes JA, Taylor NG, Hartnell R, Siitonen A, Martinez-Urtaza J (2013) Emerging Vibrio risk at high latitudes in response to ocean warming. Nat Clim Change 3:73–77

    Google Scholar 

  • Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol 42:517–525

    CAS  Google Scholar 

  • Bhakdi S, Tranum-Jensen J (1986) C5b-9 assembly: average binding of one C9 molecule to C5b-8 without poly-C9 formation generates a stable transmembrane pore. J Immunol 136:2999–3005

    CAS  Google Scholar 

  • Boshra H, Li J, Sunyer J (2006) Recent advances on the complement system of teleost fish. Fish Shellfish Immunol 20:239–262

    CAS  Google Scholar 

  • Bowden TJ (2008) Modulation of the immune system of fish by their environment. Fish Shellfish Immunol 25:373–383

    CAS  Google Scholar 

  • Brown JS, Hussell T, Gilliland SM, Holden DW, Paton JC, Ehrenstein MR, Walport MJ, Botto M (2002) The classical pathway is the dominant complement pathway required for innate immunity to Streptococcus pneumoniae infection in mice. Proc Natl Acad Sci 99:16969–16974

    CAS  Google Scholar 

  • Cai J, Huang Y, Wei S, Ouyang Z, Huang X, Qin Q (2013) Characterization of LPS-induced TNFα factor (LITAF) from orange-spotted grouper, Epinephelus coioides. Fish Shellfish Immunol 35:1858–1866

    CAS  Google Scholar 

  • Charlotte Fdr, L’hermine A, Martin N, Geleyn Y, Nollet M, Gaulard P, Zafrani ES (1994) Immunohistochemical detection of bcl-2 protein in normal and pathological human liver. Am J Pathol 144:460

    CAS  Google Scholar 

  • Colwell RR (1996) Global climate and infectious disease: the cholera paradigm*. Science 274:2025–2031

    CAS  Google Scholar 

  • Costas B, Conceição LE, Aragão C, Martos JA, Ruiz-Jarabo I, Mancera JM, Afonso A (2011) Physiological responses of Senegalese sole (Solea senegalensis Kaup, 1858) after stress challenge: effects on non-specific immune parameters, plasma free amino acids and energy metabolism. Aquaculture 316:68–76

    CAS  Google Scholar 

  • Dankert JR, Esser AF (1987) Bacterial killing by complement. C9-mediated killing in the absence of C5b-8. Biochem J 244:393–399

    CAS  Google Scholar 

  • Davies KJ (2000) Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB life 50:279–289

    CAS  Google Scholar 

  • Dunkelberger JR, Song W-C (2010) Complement and its role in innate and adaptive immune responses. Cell Res 20:34

    CAS  Google Scholar 

  • Ellis A (2001) Innate host defense mechanisms of fish against viruses and bacteria. Dev Comp Immunol 25:827–839

    CAS  Google Scholar 

  • Ganesh EA, Das S, Chandrasekar K, Arun G, Balamurugan S (2010) Monitoring of total heterotrophic bacteria and Vibrio spp. in an aquaculture pond. Curr Res J Biol Sci 2:48–52

    Google Scholar 

  • Gao B, Jeong WI, Tian Z (2008) Liver: an organ with predominant innate immunity. Hepatology 47:729–736

    CAS  Google Scholar 

  • Glauser MP, Zanetti G, Baumgartner JD, Cohen J (1991) Septic shock: pathogenesis. Lancet 338:732–736

    CAS  Google Scholar 

  • Gornati R, Terova G, Vigetti D, Prati M, Saroglia M, Bernardini G (2004) Effects of population density on seabass (Dicentrarchus labrax, L.) gene expression. Aquaculture 230:229–239

    Google Scholar 

  • Hadders MA, Beringer DX, Gros P (2007) Structure of C8α-MACPF reveals mechanism of membrane attack in complement immune defense. Science 317:1552–1554

    CAS  Google Scholar 

  • Hu YL, Pan XM, Xiang LX, Shao JZ (2010) Characterization of C1q in teleosts: insight into the molecular and functional evolutiON OF C1q family and classical pathway*. J Biol Chem 285:28777

    CAS  Google Scholar 

  • Ingram G, Hakobyan S, Robertson NP, Morgan BP (2009) Complement in multiple sclerosis: its role in disease and potential as a biomarker. Clin Exp Immunol 155:128–139

    CAS  Google Scholar 

  • Joiner K, Hammer C, Brown E, Frank M (1982) Studies on the mechanism of bacterial resistance to complement-mediated killing. II. C8 and C9 release C5b67 from the surface of Salmonella minnesota S218 because the terminal complex does not insert into the bacterial outer membrane. J Exp Med 155:809–919

    CAS  Google Scholar 

  • Katagiri T, Hirono I, Aoki T (1999) Molecular analysis of complement component C8β and C9 cDNAs of Japanese flounder, Paralichthys olivaceus. Immunogenetics 50:43–48

    CAS  Google Scholar 

  • Lee K-K (1995) Pathogenesis studies on Vibrio alginolyticus in the grouper, Epinephelus malabaricus, Bloch et Schneider. Microb Pathogenesis 19:39–48

    CAS  Google Scholar 

  • Li L, Chang M, Nie P (2007) Molecular cloning, promoter analysis and induced expression of the complement component C9 gene in the grass carp Ctenopharyngodon idella. Vet Immunol Immunopathol 118:270–282

    CAS  Google Scholar 

  • Liang-Takasaki C, Saxen H, Mäkelä P, Leive L (1983) Complement activation by polysaccharide of lipopolysaccharide: an important virulence determinant of salmonellae. Infect Immun 41:563–569

    CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods 25:402–408

    CAS  Google Scholar 

  • Luo G, Sun Y, Huang L, Su Y, Zhao L, Qin Y, Xu X, Yan Q (2020a) Time-resolved dual RNA-seq of tissue uncovers Pseudomonas plecoglossicida key virulence genes in host-pathogen interaction with Epinephelus coioides. Environ Microbiol 22:677–693

    CAS  Google Scholar 

  • Luo S-W, Cai L, Qi Z-H, Wang C, Liu Y, Wang W-N (2015a) Effects of a recombinant complement component C3b functional fragment α 2 MR (α 2-macroglobulin receptor) additive on the immune response of juvenile orange-spotted grouper (Epinephelus coioides) after the exposure to cold shock challenge. Fish shellfish Immunol 45:346–356

    CAS  Google Scholar 

  • Luo S-W, Kang H, Kong J-R, Xie R-C, Liu Y, Wang W-N, Xie F-X, Wang C, Sun Z-M (2017) Molecular cloning, characterization and expression analysis of (B-cell lymphoma-2) Bcl-2 in the orange-spotted grouper (Epinephelus coioides). Developmental Comp Immunol 76:150–162

    CAS  Google Scholar 

  • Luo S-W, Kang H, Xie R-C, Wei W, Liang Q-j, Liu Y, Wang W-N (2019a) N-terminal domain of EcC1INH in Epinephelus coioides can antagonize the LPS-stimulated inflammatory response. Fish shellfish Immunol 84:8–19

    CAS  Google Scholar 

  • Luo S-W, Luo K-K, Liu S-J (2020b) ITLN in diploid hybrid fish (Carassius auratus cuvieri ♀× Carassius auratus red var ♂) is involved in host defense against bacterial infection. Developmental Comp Immunol 103:103520

    CAS  Google Scholar 

  • Luo S-W, Luo K-K, Liu S-J (2020c) A novel LEAP-2 in diploid hybrid fish (Carassius auratus cuvieri ♀× Carassius auratus red var. ♂) confers protection against bacteria-stimulated inflammatory response. Comparative Biochemistry and Physiology Part C: Toxicology &. Pharmacology 228:108665

    CAS  Google Scholar 

  • Luo S-W, Luo Z-Y, Yan T, Luo K-K, Feng P-H, Liu S-J (2020d) Antibacterial and immunoregulatory activity of a novel hepcidin homologue in diploid hybrid fish (Carassius auratus cuvieri ♀× Carassius auratus red var ♂). Fish Shellfish Immunol 98:551–563

    CAS  Google Scholar 

  • Luo S-W, Wang W-N, Cai L, Qi Z-H, Wang C, Liu Y, Peng C-L, Chen L-B (2015b) Effects of a Dissostichus mawsoni-CaM recombinant proteins feed additive on the juvenile orange-spotted grouper (Epinephelus coioides) under the acute low temperature challenge. Fish Physiol Biochem 41:1345–1358

    CAS  Google Scholar 

  • Luo S-W, Wang W-N, Sun Z-M, Xie F-X, Kong J-R, Liu Y, Cheng C-H (2016a) Molecular cloning, characterization and expression analysis of (B-cell lymphoma-2 associated X protein) Bax in the orange-spotted grouper (Epinephelus coioides) after the Vibrio alginolyticus challenge. Developmental Comp Immunol 60:66–79

    CAS  Google Scholar 

  • Luo S-W, Wang W-N, Xie R-C, Xie F-X, Kong J-R, Xiao Y-C, Huang D, Sun Z-M, Liu Y, Wang C (2016b) Molecular cloning and characterization of PTEN in the orange-spotted grouper (Epinephelus coioides). Fish Shellfish Immunol 58:686–700

    CAS  Google Scholar 

  • Luo S-W, Wei W, Yang P, Lai C-M, Liang Q-j, Liu Y, Wang W-N (2019b) Charact a CD59 orange-spotted Groupe (Epinephelus coioides) Fish shellfish Immunol 89:486–497

    CAS  Google Scholar 

  • Luo S, Huang Y, Xie F, Huang X, Liu Y, Wang W, Qin Q (2015c) Molecular cloning, characterization and expression analysis of PPAR gamma in the orange-spotted grouper (Epinephelus coioides) after the Vibrio alginolyticus challenge. Fish shellfish Immunol 43:310–324

    CAS  Google Scholar 

  • Luo S, Xie F, Liu Y, Wang W-N (2015d) Molecular cloning, characterization and expression analysis of complement component C8 beta in the orange-spotted grouper (Epinephelus coioides) after the Vibrio alginolyticus challenge. Gene 558:291–298

    CAS  Google Scholar 

  • Magnadottir B (2010) Immunological control of fish diseases. Mar Biotechnol 12:361–379

    CAS  Google Scholar 

  • Montero D, Izquierdo M, Tort L, Robaina L, Vergara J (1999) High stocking density produces crowding stress altering some physiological and biochemical parameters in gilthead seabream, Sparus aurata, juveniles. Fish Physiol Biochem 20:53–60

    CAS  Google Scholar 

  • Morgan B, Campbell A, Compston D (1984) Terminal component of complement (C9) in cerebrospinal fluid of patients with multiple sclerosis. Lancet 324:251–255

    Google Scholar 

  • Nishida N, Walz T, Springer TA (2006) Structural transitions of complement component C3 and its activation products. Proc Natl Acad Sci 103:19737–19742

    CAS  Google Scholar 

  • Peitsch MC, Amiguet P, Guy R, Brunner J, Maizel JV, Tschopp J (1990) Localization and molecular modelling of the membrane-inserted domain of the ninth component of human complement and perforin. Mol Immunol 27:589–602

    CAS  Google Scholar 

  • Sahu A, Lambris JD (2001) Structure and biology of complement protein C3, a connecting link between innate and acquired immunity. Immunological Rev 180:35–48

    CAS  Google Scholar 

  • Schäfer H, Mathey D, Hugo F, Bhakdi S (1986) Deposition of the terminal C5b-9 complement complex in infarcted areas of human myocardium. J Immunol 137:1945–1949

    Google Scholar 

  • Shinkai Y, Takio K, Okumura K (1988) Homology of perforin to the ninth component of complement (C9). Nature 334:525–527

    CAS  Google Scholar 

  • Sjöberg A, Onnerfjord P, Mörgelin M, Heinegård D, Blom AM (2005) The extracellular matrix and inflammation: fibromodulin activates the classical pathway of complement by directly binding C1q. J Biol Chem 280:32301

    Google Scholar 

  • Slade DJ, Chiswell B, Sodetz JM (2006) Functional studies of the MACPF domain of human complement protein C8α reveal sites for simultaneous binding of C8β, C8γ, and C9. Biochemistry 45:5290–5296

    CAS  Google Scholar 

  • Small AG, Al-Baghdadi M, Quach A, Hii C, Ferrante A (2016) Complement receptor immunoglobulin: a control point in infection and immunity, inflammation and cancer. Swiss Med Wkly 146:w14301

    Google Scholar 

  • Stahl GL, Shernan SK, Smith PK, Levy JH (2012) Complement activation and cardiac surgery: a novel target for improving outcomes. Anesthesia analgesia 115:759

    CAS  Google Scholar 

  • Stanley KK (1989) The molecular mechanism of complement C9 insertion and polymerisation in biological membranes. Curr Top Microbiol Immunol 140:49–65

    CAS  Google Scholar 

  • Stanley K, Luzio P (1988) Perforin. A family of killer proteins. Nature 334:475

    CAS  Google Scholar 

  • Sun Y, Zhuang Z, Wang X, Huang H, Fu Q, Yan Q (2019) Dual RNA-seq reveals the effect of the flgM gene of Pseudomonas plecoglossicida on the immune response of Epinephelus coioides. Fish Shellfish Immunol 87:515–523

    CAS  Google Scholar 

  • Sung YY, MacRae TH, Sorgeloos P, Bossier P (2011) Stress response for disease control in aquaculture. Rev Aquac 3:120–137

    Google Scholar 

  • Sunyer JO, Tort L (1995) Natural hemolytic and bactericidal activities of sea bream Sparus aurata serum are effected by the alternative complement pathway. Vet Immunol Immunopathol 45:333–345

    CAS  Google Scholar 

  • Tomlinson S, Stanley KK, Esser AF (1993) Domain structure, functional activity, and polymerization of trout complement protein C9. Developmental Comp Immunol 17:67–76

    CAS  Google Scholar 

  • Wang Q, Liu Q, Cao X, Yang M, Zhang Y (2008) Characterization of two TonB systems in marine fish pathogen Vibrio alginolyticus: their roles in iron utilization and virulence. Arch Microbiol 190:595–603

    CAS  Google Scholar 

  • Woida PJ, Satchell KJ (2020) The Vibrio cholerae MARTX toxin silences the inflammatory response to cytoskeletal damage before inducing actin cytoskeleton collapse. Science Signaling 13:eaaw9447

  • Yan Z, Xiang J, Yang L, Chen Y, Wang T, Gong G, Lei W, Li X, Chen S, Sha Z (2015) sghC1q, a novel C1q family member from half-smooth tongue sole (Cynoglossus semilaevis): Identification, expression and analysis of antibacterial and antiviral activities. Dev Comp Immunol 48:151–163

    Google Scholar 

  • Zhang B, Zhuang Z, Wang X, Huang H, Fu Q, Yan Q (2019) Dual RNA-Seq reveals the role of a transcriptional regulator gene in pathogen-host interactions between Pseudomonas plecoglossicida and Epinephelus coioides. Fish Shellfish Immunol 87:778–787

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China, China (grant no. 31902363) and the Doctoral Publishing Fund of Hunan Normal University, China (grant nos. 368002).

Funding

This research was funded by National Natural Science Foundation of China, China (grant no. 31902363) and the Doctoral Publishing Fund of Hunan Normal University, China (grant nos. 368002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Wei Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Chinese animal welfare laws, guidelines and policies (GB/T 35892–2018).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, SW., Wei, W. Molecular characterization of complement 9 in Epinephelus coioides and differential expression analysis of classical complement genes following Vibrio alginolyticus challenge. Ecotoxicology 29, 837–845 (2020). https://doi.org/10.1007/s10646-020-02252-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-020-02252-x

Keywords

Navigation